TERRAIN

Terrain FUZE

Design, specification and installation guide

At Genuit Group we help create a better built environment, by developing and producing sustainable solutions to the key challenges faced in water, climate and ventilation management. Sustainability is core to our commercial strategy, driving innovation in both how we run our business and the products we create. We find solutions for the environmental challenges facing our infrastructure, our buildings and our communities, and delivering these at scale.

The Genuit Group of businesses are recognised as professionals and experts in their given markets. From commercial and residential applications, heating and ventilation, fabrications, roads and highways to plumbing, large scale water storage and drainage, tall building applications and green infrastructure solutions. Our goal is to be the leading, UK-focused, sustainable products Group – helping construction build better.

Polypipe

Together, we aim to provide solutions to the sustainability and construction challenges of today and in the future. The increased need for resilient drainage systems, for example, the need for important Green Urbanisation, for cleaner, healthier air, for simpler, faster and more cost-effective drainage installations, for innovative future-ready systems and for low/zero-carbon heating and low-carbon construction.

GENUIT

Helping construction build better is at the heart of what we do. Through our sustainability strategy, the resilient way in which we operate, our capabilities and scalability, and our speed and agility through working together to understand exactly what you need to succeed.

Polypipe Middle East

OUR HISTORY

With more than 60 years experiencing the challenges of climate change and construction changes in the Middle East, our industry and logistic knowledge of water management solutions within high-rise and super high-rise buildings is tried, tested and trusted.

Why Polypipe Middle East?

- Engineered end-to-end solutions
- Proven-to-perform capabilities
- **Expert Technical Team**
- Specialist involvement in the area for over
- Smarter water management solutions.

To ensure the super high-rise landscape of the GCC is compliant and provides the resilience toward a modern-day environment, our Technical Team works closely with Contractors, Consultants and Local Municipalities to ensure our systems are safe, durable and comply with all regulations.

With strong local business partnerships and a specific understanding of regional practices, requirements, cultures and regulations, we are ideally placed to offer pioneering, yet proven innovative water management systems and solutions that meet the particular needs of the Middle East environment and rapidly growing urban infrastructure.

THE GENUIT GROUP POLYPIPE BUILDING SERVICES

ONTENTS

Contents

MORE INNOVATION. MORE EXPERTISE. MORE SUPPORT.

Polypipe Middle East is always working to develop more exceptional products and more cost-effective ways to complete your project. For nearly 60 years, our Terrain brand has been the industry benchmark for drainage systems, but we offer so much more, including our multi-award winning water management solution Permavoid.

PRODUCTS AND SYSTEMS

Our specialism is tall buildings, so our products, systems and services reflect that, in design, performance and ease of installation. Our Terrain brand of products and systems have been no exception, from our benchmark, FUZE drainage stacks and PVC soil and waste systems, to the Terrain Q noise reducing system, P.A.P.A.® & Pleura Vent Systems and Firetraps.

However, our continued investment in new technologies and more innovative solutions, enables us to increase our category portfolio, including supply applications like MecFlow. We are constantly working to bring to market only the most sustainable, beneficial, and cost-effective products and systems – engineered from the most practical, recycled and recyclable materials. Together with our Advantage Service, fabrication capabilities and customer support, you're never left without a solution – whatever the challenge. Contact our sales team to discover more at middleeast@polypipe.com

TECHNICAL

All our products and systems are backed by our hands-on technical team, providing expert support to ensure you receive a system that's right for your project. Whether it's a single component, or a fully fabricated system, you can call upon our specialist advice, and rely on us to deliver exactly what you need.

Welcome to Polypipe Middle East. Delivering more, to achieve more.

SECTION 1	Welcome to Polypipe	Page
The Genuit (Group	2
Polypipe Mi	ddle East	3 – 4
Contents		5
CECTION 2	Introduction to FII7F	
SECTION 2	Introduction to FUZE	6 – 7
Introducing Features and		
reatures and	a Benefits	8 – 9
SECTION 3	Soil and Waste Drainage	
Soil and Wa	ste Drainage	10 – 12
Terrain Drai	nage Ventilation System	13
Drainage Pip	pework Systems	14
Terrain P.A.F	P.A. & Pleura Drainage	15 – 16
Ventilation 9	System	13 – 10
Case Studies	;	17
Base Stack		18 – 19
SECTION 4	Pipes and Fittings	
HDPE Pipes	T. Pes ana Freeings	20
HDPE Fitting	as	21 – 41
HDPE Spares		42 – 43
HDPE Firetra		44
HDPE Ancho	ors and Brackets	45 – 46
Terrain FUZE	Electrofusion	
Welding Ma	chine	47
HDPE Trappe	ed Floor Gully	48
Tooling		49
SECTION 5	Chamical Desistance	
Chemical Re	Chemical Resistance	50 – 51
	sistance sistance Tables	52 – 61
Chemical Ne	sistance rables	32 - 01
SECTION 6	Storage & Handling	
Good Site Pr	ractice	62 – 63
SECTION 7	Jointing Methods	
Jointing Me	, and the second se	64
Electrofusion		65 – 66
Butt Weldin		67 – 68
Ring Seal &	_	69
	lechanical Joints, Rigid Fixing	70 – 71
rianged & IV	- Indianical Joines, Rigid Lixing	70-71

SECTION 8 Adapting to Other Materials	
Adapting to Other Materials	72
Terrain Q - Terrain FUZE (HDPE)	73
FUZE (HDPE) – PVC-c, Chrome – FUZE (HDPE	74
PVC-c – FUZE (HDPE)	7!
SECTION 9 Installation	
HDPE Thermal Expansion	76 – 77
Vertical Expansion System	78
Horizontal Expansion System	79
Bracketing an Expansion System	80
Example of an Expansion System	8
Vertical Locked System	82
Horizontal Locked System	83
Bracketing a Locked System	84
Summary of Expansion & Locked Systems	8!
WC Connection	86
Deflection Leg	87
Non-pressure Underground Installation	88
Special Consideration	89
Weathering Information & Vent Cowl	90 – 9
CECTION 10	
SECTION 10 Firetrap Sleeves and Collars	02 0
Firetrap Collars	92 – 93 94 – 93
Firetrap Collars	34 - 3.
SECTION 11 System Testing and Mainten	ance
Testing	96 – 97
System Maintenance	98 – 99
SECTION 12 Support	
Support	100 – 10
SECTION 13 Approval	
Terrain FUZE, HDPE Soil and Waste	102
Polypipe Quality Assurance	103

2 Introduction to FUZE

Amodernhighdensitypolyethylenesystem with many advantages over cast iron and other traditional systems.

Terrain FUZE is a top-to bottom solution for all above and below ground drainage and many chemical waste applications.

Terrain FUZE is manufactured using HDPE for superior performance and exceptional durability. HDPE is resilient to extreme temperatures enabling applications for hot water and within colder environments. For example, without mechanical load, FUZE is able to tolerate temperatures of up to 80°C – even up to 95°C for a maximum of two minutes – against the flow of hot water.

The lightweight nature of Terrain FUZE allows the product to be installed quickly and efficiently, giving direct, resource-saving benefits to specifiers and installers.

For further information see contact details on the back cover of this brochure.

Terrain FUZE Technical Manual 2023

2 Introduction to FUZE

Features and Benefits

TERRAIN HIGH DENSITY POLYETHYLENE HDPE: DENSITY 945 – 965 kg/m³

Polyethylene density varies between 945 – 965kg/m³. Terrain FUZE retains exceptional quality and durability at up to 965kg/m³ giving great confidence to specifiers and installers. HDPE is a lighter material than water, offering direct benefits in handling, transportation and installation.

RESISTANCE TO COLD

Terrain FUZE pipes are resistant to freezing within the pipeline. When tested, the pipes simply expand with the ice and then return to their original dimensions without any damage.

FLEXIBILITY

Flexibility of a pipeline can be a major factor on certain building projects where concern must be given to the route of the pipeline through expansion joints or areas subject to vibrations.

RESISTANCE TO CHEMICALS

Terrain FUZE offers high resistance against chemical corrosion and is insoluble in all inorganic and organic solutions at 20°C.
Terrain FUZE is only susceptible to aliphatic and aromatic carbons and relative chlorination products over 90°C. The material is also vulnerable to attack by heavily oxidised media conc. HNO3 (chemical equation), conc. H2SO4 (chemical equation) when exposed over long periods at room temperature.

SCOPE OF USE

Terrain FUZE offers exceptional performance as a drainage system. A maximum load of 15m Water Column (1.5 bar) temperature of 30°C (10years) should be considered when utilising the pipes in a low-pressure environment.

RESISTANCE TO IMPACT

Terrain FUZE ensures maximum strength against impact stresses and is unbreakable at room temperature. It still maintains a high impact resistance at temperatures as low as -40°C thus meets the requirements for outlet pipes.

NON-TOXIC

Terrain FUZE pipes are non-toxic, ensuring safe handling during installation. With no risk of contamination to the flow through the pipeline, HDPE is even suitable for use in the food or liquid transportation industries.

BEHAVIOUR IN FIRE

HDPE in open construction is a flammable material. However, the material has been installed throughout Europe for over 40 years and poses no greater risk to fire spread than other similar plastic based systems when installed in accordance with local fire regulations. For further prevention, Terrain FUZE should be fitted with Terrain fire collars or sleeves (see Terrain Drainage System Price List) and these should be installed in strict accordance with instructions provided.

NOISE

HDPE has a low E-modulus and limits solid-borne conduction along the pipeline. Airborne noise should be insulated by utilising duct wall.

PROTECTION AGAINST BLOCKAGES

Terrain FUZE enables the continual flow of waste through the pipe, reducing the possibility of blockages along the pipeline.

SEALING MATERIAL

The rubber ring on the seal is installed under compression on all sides and is protected from expansion so, although the chemical resistance of the seal does not equate to that of HDPE, there is no risk of the seal being destroyed.

HEAT EXPANSION 0.2mm/m/°C

Expansion of the HDPE pipeline should be anticipated when put under heat stress. As a general rule, an expansion rate of 10mm per linear metre for every 50°C should be allowed.

WELDING TEMPERATURE

With a much lower welding temperature of 210°C minimum, HDPE is a much safer and easier material to work with compared to metal. This enables processing of the material using simple tools and in a more energy efficient manner.

NON-CONDUCTIVE

HDPE like most plastics has an exceptional reputation as an insulator.

RESISTANCE TO ABRASION

HDPE offers greater abrasion resistance through increased strength within the walls of the pipeline. This additional protection of the pipe makes HDPE an effective material for branch pipes, soil stacks and ground pipes.

CONDENSATE

Terrain FUZE is a poor heat conductor thus preventing condensation from forming as the pipeline undergoes short periods of intense undercooling.

RESISTANCE TO HOT WATER

Terrain FUZE offers substantial durability against the flow of hot water. A waste pipe with no mechanical load will tolerate temperatures of up to 80°C and up to 95°C is permissible for a maximum of two minutes.

EASY HANDLING

Lightweight and quick to install, constructions teams choose Terrain FUZE for its ease-of-use as well as its outstanding performance properties.

A soil and waste system should be installed on a project to facilitate:

- Ease of access and maintenance to all parts of the system
- Flexible expansion of the system and integration with other pipe systems

Straight sections of horizontal pipe must be installed in perfect alignment with the pipe's axis and parallel to the wall. Vertical sections of the pipeline should be fixed in perfect alignment with the axis. Right angle bends must only be used to connect horizontal and vertical pipes and not within horizontal pipe networks.

Branches in the soil stack must be created using swept entry fittings when the branch is equal to the soil stack size. Eccentric reductions must be used, when the pipe diameter varies in the horizontal branch pipes, to ensure a centred connection of the pipes at the axis line. To minimise reductions in speed, sound and other negative effects variances in the direction of the horizontal and vertical pipe system must be kept to a minimum and use large radius bends. The stack vent should protrude by 2m above the roof structure where possible, and never less than 0.3m. Ventilating pipes to the outside air should finish at least 900mm above any opening into the building within 3m.

Access pipes should be installed in the following cases:

- At the beginning of the main manifolds in the waste system and at the base of every internal soil stack
- Access pipes should be installed every 15m for a linear stretch of pipe with a diameter equal to or less than 110mm and every 30m for larger diameter pipes
- Wherever two or more branches connect

Access pipes must be within easy reach throughout the system and must offer sufficient space for the use of utensils to clean the pipes.

The use of HDPE soil & waste pipe and fittings

The elements of the HDPE total pipe system offer direct benefits to the specifier and installer over more traditional materials. These benefits cover:

- Terrain FUZE HDPE is easier than more traditional materials to transport and handle safely due to its light weight.
- Terrain FUZE HDPE is installed quicker and easier than more traditional materials, offering increased time and labour savings on-site
- Terrain FUZE HDPE is resistant to impact shock
- Due to its composition, HDPE is highly resistant to chemical attack and will not erode, ensuring a long life for the system
- Terrain FUZE HDPE offers system flexibility, where alterations can be made easily to a completed system
- A smooth inner surface of the pipe minimises the risk of build-up or scaling
- Terrain FUZE HDPE welded joints will not deteriorate over time as no other materials or solvents are used
- Terrain FUZE HDPE can be used in close proximity to electrical installations or systems as it is not subject to electrolytic action
- Terrain FUZE HDPE offers a broad range of bespoke and fabricated items to be used in conjunction with the product ranges

Terrain FUZE HDPE offers a wide range of additional drains, traps and adaptors to be used with the standard catalogue of pipes and fittings, enabling HDPE products to be connected to other materials such as PVC, cast iron and cement pipes. This enables Terrain FUZE products to be used in an extensive range of applications, for example, in below ground applications when waste pipes with butt welded or electrofusion welded joints are utilised.

For all Terrain FUZE HDPE pipes and fittings, please see pages 20 to 49.

Table A: Discharge units (DU) Values

APPLIANCE	SYSTEM III DU I/s
Wash basin, bidet	0.3
Shower without plug	0.4
Shower with plug	1.3
Single urinal with cistern	0.4
Urinal with flushing valve	-
Slab urinal	0.2*
Bath	1.3
Kitchen sink	1.3
Dishwasher (household)	0.2
Washing machine up to 6kg	0.6
Washing machine up to 12Kg	1.2
WC with 4.0L cistern	**
WC with 6.0L cistern	1.2 to 1.7***
WC with 7.5L cistern	1.4 to 1.8***
WC with 9.0L cistern	1.6 to 2.0***
Floor gully DN 50	-
Floor gully DN 70	-
Floor gully DN 100	-

^{*} Per person ** Not permitted - Not used or no data.

Example: 10 storey building with:

2	WC	1	2 x 1.5 = 3.0
			2 X 1.3 – 3.0
4	WHB		4 x 0.3 = 1.2
2	Baths	On each floor	2 x 1.3 = 2.6
2	Sinks		2 x 1.3 = 2.6
2	W/MC		2 x 0.6 = 1.2

10.6 x 9 = 95.4 DU

Domestic Building Use K = 0.70.7 $\sqrt{95.4}$.84 I/s

See Table C and D for capacities of pipes.

Table B: Typical frequency factors (K)

USAGE OF APPLIANCES	К
Intermittent use, e.g. in dwelling, guesthouse, office	0.5
Frequent use, e.g. in hospital, school, restaurant, hotel	0.7
Congested use, e.g. in toilets and/or showers open to public	1.0
Special use, e.g. laboratory	1.2

Frequency factor (K)

Typical frequency factors associated with different usage of appliances Table B.

Calculation of flowrate Waste water flowrate (Qww)

Qww is the expected flowrate of waste water in a part or in the whole drainage system where only domestic sanitary appliances are connected to the system

Qww = $K\sqrt{\Sigma}DU$ where:

Qww = Waste water flowrate (L/s)

K = Frequency factor

ΣDU = Sum of discharge units.

NB: Under no circumstances should pipe of a larger diameter be connected o pipe of a smaller diameter in the direction of flow.

^{***} Depending upon type (valid for WC's with siphon flush cistern only)

Table C: Stack with only Primary Vent

STACK & STACK VENT	SYSTEM I, II, III, IV Q MAX (L/S)					
DN	Square # entries	Swept entries				
60	0.5	0.7				
70	1.5	2.0				
80*	2.0	2.6				
90*	2.7	3.5				
100*	4.0	5.2				
125	5.8	7.6				
150	9.5	12.4				
200	16.0	21.0				

- * Minimum size where WC's are connected in system II.
- ** Minimum size where WC's are connected in system I, III, IV. # Equal branch junctions that are more than 45° or has a centre line radius less than the internal pipe diameter.

Table D: Stack with Secondary Venting

STACK & STACK VENT	SECONDARY VENT	SYSTEM Q MAX	I, II, III, IV K (L/S)
	DN	Square # entries	
60	50	0.7	0.9
70	50	2.0	2.6
80*	50	2.6	3.4
90*	50	3.5	4.6
100*	50	5.6	7.3
125	70	7.6	10.0
150	80	12.4	18.3
200	100	21.0	27.3

- * Minimum size where WC's are connected in system II
- Minimum size where WC's are connected in system I, III, IV. # Equal branch junctions that are more than 45°, or has a centre line radius less than the internal pipe diameter.

For branch pipe sizing based on System III the following sizing charts should be used.

APPLIANCE	DIA. DN	MIN. TRAP SEAL DEPTH (mm)	MAX. LENGTH (L) OF PIPE FROM TRAP OUTLET TO STACK (m)	PIPE GRADIENT	MAX. NO OF BENDS	MAX. DROP (H) (m)
Limitations fo	or unve	entilated	branch dischar	ge pipes, sy	ystem III	
Washbasin, bidet (30mm dia. trap)	2.2 ¹)	0	0			
Washbasin, bidet (30mm dia. trap)	30	75	1.1	4.4 ¹)	0	0
Washbasin, bidet (30mm dia. trap)	30	75	0.7	8.7¹)	0	0
Washbasin, bidet (30mm dia. trap)	40	75	3.0	1.8 to 4.4	2	0
Shower, bath	40	50	No Limit²)	1.8 to 9.0	No Limit	1.5
Bowl urinal	40	75	3.0 ³)	1.8 to 9.0	No Limit ⁴)	1.5
Trough urinal	50	75	3.0 ³)	1.8 to 9.0	No Limit ⁴)	1.5
Slab urinal ³)	60	50	3.0 ³)	1.8 to 9.0	No Limit ⁴)	1.5
Kitchen sink (40mm dia. trap)	40	75	No Limit²)	1.8 to 9.0	No Limit	1.5
Household dishwasher or washing machine	40	75	3.0	1.8 to 4.4	No Limit	1.5
WC with outlet up to 80mm ⁶)	75	50	No Limit	1.8 min	No Limit ⁴)	1.5
WC with outlet greater than 80mm ⁶)	100	50	No Limit	1.8 min	No Limit ⁴)	1.5
Food waste disposal ⁷)	40 min.	75 ⁸)	3.0 ³)	13.5 min	No Limit ⁴)	1.5
Sanitary towel disposal unit	40 min.	75 ⁸)	3.0 ³)	5.4 min	No Limit ⁴)	1.5
Floor drain	50	50	No Limit ³)	1.8 min	No Limit	1.5
Floor drain	50	50	No Limit ³)	1.8 min	No Limit	1.5
Floor drain	100	50	No Limit³)	1.8 min	No Limit	1.5
4 basins	50	75	4.0	1.8 to 4.4	0	0
Bowl urinals ³)	50	75	No Limit³)	1.8 to 1.9	No Limit ⁴)	1.5
Maximum of 8 WC's ⁶)	100	50	15.0	0.9 to 9.0	2	1.5
Up to 5 spray tap basins ⁹)	30 max	50	4.5³)	1.8 to 4.4	No Limit ⁴)	0

- 1) Steeper gradient permitted if pipe is
- 2) If length is greater than 3m noisy discharge may result with an increased risk of blockage
- 3) Should be as short as possible to limit
- problems with deposition.
- 4) Sharp throated bends should be avoided
- 5) For slab urinal for up to 7 persons. less than maximum permitted length.
 - Swept-entry branches serving WC's.
 - Includes small potato-peeling machines. Tubular not bottle or resealing traps.
 - Spray tap basins shall have flush-grated wastes without plugs.

APPLIANCE	DIA. DN	MIN. TRAP SEAL DEPTH (mm)	MAX. LENGTH (L) OF PIPE FROM TRAP OUTLET TO STACK (m)	PIPE GRADIENT	MAX. NO OF BENDS	MAX. DROP (H) (m)
Limitations						
Washbasin, bidet (30mm dia. trap)	30	75	3.0	1.8 min	2	3.0
Washbasin, bidet (30mm dia. trap)	40	75	3.0	1.8 min	No Limit	0
Shower, bath	40	50	No Limit ²)	1.8 min	No Limit	No Limit
Bowl urinal	40	75	3.0 ³)	1.8 min	NoLimit ⁴)	3.0
Trough urinal	50	75	3.0 ³)	1.8 min	NoLimit ⁴)	3.0
Slab urinal ³)	60	50	3.0 ³)	1.8 min	NoLimit ⁴)	3.0
Kitchen sink (40mm dia. trap)	40	75	No Limit²)	1.8 min	No Limit	No Limit
Household dishwasher or washing machine	40	75	No Limit³)	1.8 min	No Limit	No Limit
WC with outlet up to 80mm ⁶) & ¹⁴)	75	50	No Limit	1.8 min	NoLimit ⁴)	1.5
WC with outlet greaterthan80mm ⁶)& ¹⁴)	100	50	No Limit	1.8 min	NoLimit ⁴)	1.5
Food waste disposal ⁷)	40 min.	758)	3.0 ³)	13.5 min	NoLimit ⁴)	3.0
Sanitary towel disposal unit	40 min.	758)	3.0 ³)	5.4 min	NoLimit ⁴)	3.0
Bath drain, floor drain	50	50	No Limit ³)	1.8 min	No Limit	No Limit
Floor drain	70	50	No Limit ³)	1.8 min	No Limit	No Limit
Floor drain	100	50	No Limit ³)	1.8 min	No Limit	No Limit
5 basins ⁹)	50	75	7.0	1.8 to 4.4	2)	0
10 basins ⁹) & ¹⁰)	50	75	10.0	1.8 to 1.9	No Limit	0
Bowl urinals ⁹) & ¹¹)	50	70	No Limit ³)	1.8 min	NoLimit ⁴)	No Limit
More than 8 WC's ⁶)	100	50	No Limit	0.9 min	No Limit	No Limit
Up to 5 spray tap basins ¹²)	30 max	50	No Limit³)	1.8 to 4.4	NoLimit ⁴)	0

- (see Figure 8 of BS EN 1205-2:2000).
- 2) If length is greater than 3 m noisy discharge may result with an increased risk of
- 3) Should be as short as possible to limit problems with deposition.
- 4) Sharp throated bends should be avoided.5) For slab urinal for up to 7 persons.
- Swept-entry branches serving WC's. Includes small potato-peeling machines. Tubular not bottle or resealing traps. 9) See Figure 9 of BS EN 12056-2:2000).
- 1) For maximum distances from trap to vent 10) Every basin shall be individually 11) Any number
 - Spray tap basins shall have flush-grated wastes without plugs.
- 13) The size of ventilating pipes to branches from appliances can be DN 25 but, if they arelongerthan 15 mor contain more than five bends, a DN 30 pipe shall be used. Longer slabs to have more than one outlet. 14) If the connection of the ventilating pipe
 - is liable to blockage due to repeated splashing or submergence, it should be DN 50, up to 50mm above the spill-over of the appliance.

Terrain Drainage Ventilation System

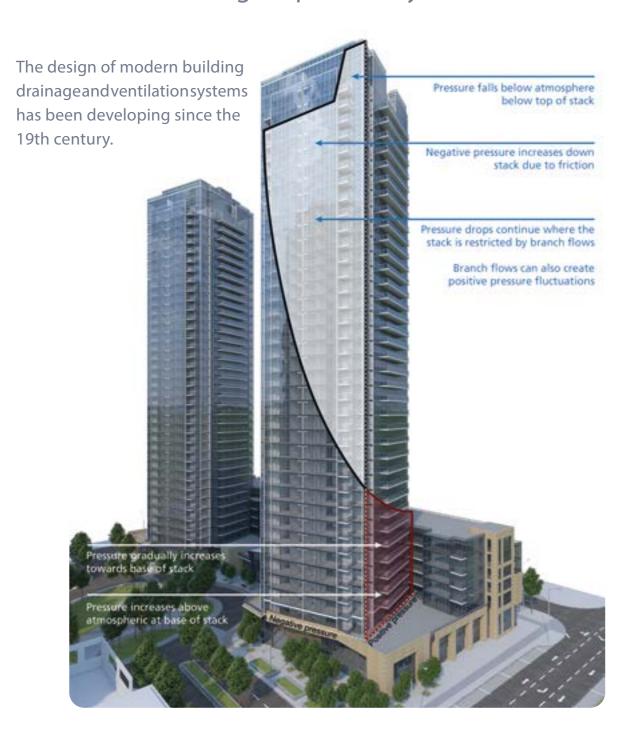
Terrainsoil&wasteproductsrepresenttheindustrybenchmarkforquality,installation, flexibility and product innovation, backed by the highest levels of customer service. Terrain systems comprise of an extensive range of soil & waste drainage products, including the Terrain Pleura system, a unique alternative engineered ventilations olutionfor high-rise buildings.

As you would expect from a market leader our products come with all relevant standards including:

Manufacturing Standards

BS EN 12380 A1 Air Admittance Valve (Pleura System) Terrain FUZE HDPE: BS EN 1519/BBA, Certificate No. 07/4479

Quality Management Systems Standards


EN ISO 9001:2008 Management System EN ISO14001:2004 Management System BS OHSAS 18001:2007 Management System PASS 99:2006 Integrated Management Registration

Ventilated discharge branches: Sizes and limitations upon the use of ventilated discharge branches are given in the tables above. Limitations given in the second table are simplifications, for further information see national and local regulations and practice.

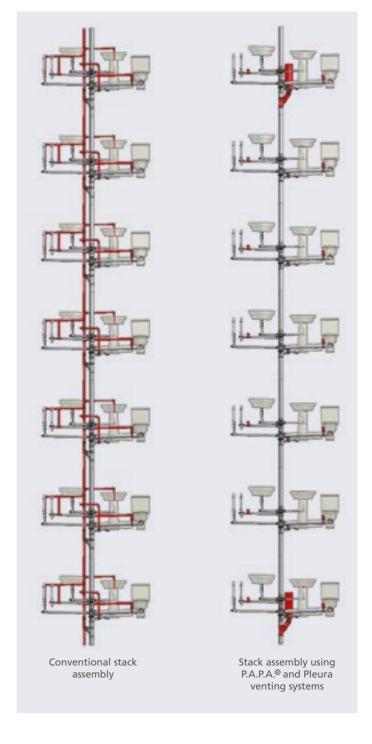
Ventilation Drainage Pipework Systems

A minimum of 50mm of water is all that protects the occupants of a building from potentially harmful sewer gases and 'particulates'. Therefore, a good design must consider the integrity of the trap seal and protect it from being lost. One way of doing this is to consider the air flow within the system, as this is the primary reason for trap seal breach. The flow of air within the drainage pipework system is equally as important as the flow of water in maintaining a safe and

hygienic drainage system. This is because the flow of water creates both positive and negative air fluctuations which can compromise water trap seals and upset the equilibrium in the system. Installation of a secondary stack is traditionally the answer to help alleviate the pressure within the system, however, this modern method of drainage ventilation saves cost, time, floor space and is a more efficient solution.

Terrain P.A.P.A.*& Pleura Drainage Ventilation System

The smarter air pressure and drainage ventilation system for high-rise buildings.


Following several years of theoretical and practical research into both positive and negative transient pressure fluctuations in drainage systems, the Terrain Pleura system provides both an intelligent and integrated solution for balancing the ambient air pressure within a drainage system.

Terrain P.A.P.A® and Pleura drainage ventilation system; how it works:

Terrain Pleura regulators balance negative air pressure fluctuations whilst a positive pressure reduction device (P.A.P.A) balances positive pressures. Together, they protect the water trap seal from damage by forming a highly effective alternative solution for maintaining ambient air pressure within the drainage pipework system – whilst trapping foul air and introducing fresh air into the built environment.

Terrain P.A.P.A can be installed with all of our fabricated soil and waste drainage stacks.

To find out more, visit www.polypipe.com/this-is-our-terrain/terrain-papa-pleura

WASTE DRAINAGE

TERRAIN DRAINAGE VENTILATIC SYSTEM

> P.A.P.A° AND PLEUR

BASE STACK/
TRANSITION
AREAS
BASE OF STACK

TERRAIN PLEURA 50

The Terrain Pleura 50 air regulator provides ventilation to branch pipework. It is generally installed on the pipe behind the appliance trap. The Terrain Pleura 50 opens and admits fresh air into the branch pipe when the negative (suction) pressure occurs from an appliance discharging into the pipework system. This equalises the ambient air pressure within the pipework and protects the trap seal. When the flow stops and the internal ambient air pressure in the pipework balances, the Terrain Pleura 50 closes by gravity and prevents foul air entering the built environment.

TERRAIN PLEURA 100

The Terrain Pleura 100 air regulator can be fitted on to the top of a foul or waste stack or at the end of long low gradient branch drains to provide ventilation. The Terrain Pleura 100 opens and admits fresh air under condition of reduced pressure in the discharge pipes and prevents trapped water seals being drawn. As the internal ambient air pressure in the pipework balances, the Terrain Pleura 100 closes by gravity and prevents foul air entering the built environment.

TERRAIN P.A.P.A°

The Terrain P.A.P.A is a positive pressure reduction device, designed to mitigate the affects of positive air fluctuations in the drainage pipework system. As water descends down the drainage stack it creates a negative pressure; if that flow is interrupted or is approaching a change of direction, the negative pressure changes to a positive pressure and moves up the pipe. This low amplitude air wave typically travels at 320m/s, the speed of sound.

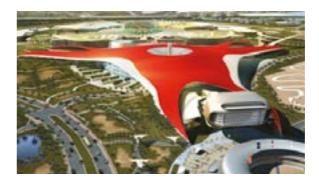
As the positive air fluctuation approaches the branch-off point for the Terrain P.A.P.A, the bladder within the unit reacts very quickly, within 0.2 seconds, and starts to expand; this creates a pressure differential at the branch-off point. The branch to the Terrain P.A.P.A then becomes the path of least resistance and the majority of the positive air pressure is absorbed within the unit

As the ambient air pressure within the pipework starts to equalise, the bladder slowly releases the small volume of air into the pipework system at only 12m/s, which will have no effect on the trap seals.

Terrain P.A.P.A.* 9300.4

Pleura 100 9301.34

Pleura 50 9301.253


Case Studies

© BVLGARI, http://meraasbvlgari.com

BVLGARI PROMENADE & OCEAN VIEW RESIDENCES, DUBAI

A range of Terrain's drainage ventilation and soil and waste systems are installed at the Bylgari Promenade & Ocean View residences in Dubai – one of Dubai's most prestigious residential developments. The luxury development has been fitted with Terrain Above and Below Ground, Terrain Q and Terrain FUZE drainage systems, helping to meet the project's drainage and soil and waste requirements.

FERRARI WORLD, ABU DHABI

The Ferrari Theme Park is part of a joint project between Italian automotive manufacturer Ferrari and ALDAR Properties PJSC. The 250,000 square metre (more than 2.6 million square feet) park is an oasis of discovery, hospitality, and beauty. The Terrain P.A.P.A.® system represents a complete and innovative drainage solution and was installed at the top of stacks to avoid the need for open venting through roof to support the stunning elegance of the design. A total of 110 Terrain P.A.P.A.®, 310 Mini-Vents and 55 Maxi-Vents formed the Terrain P.A.P.A.® system used in the Ferrari World project. The Terrain P.A.P.A.® drainage ventilation absorbs the pressure fluctuations inside the sealed drainage system and protects the trap seals. The system enabled considerable space saving and allowed a flexible ventilation application within this extraordinarily designed complex.

MUSEUM OF THE FUTURE, DUBAI

The Museum of the Future is no ordinary museum. A building as uniquely shaped as this requires equally innovative engineering solutions to match. And since vertical drainage was out of the question, an active ventilation solution, Terrain Pleura Vent System, was selected, enabling a closed drainage system with no visible roof penetration for vent pipes, saving large amounts of drainage piping. In addition to this, the Museum of the Future also opted for the installation of a Polystorm soakaway tank, offering a controlled and sustainable way to re-introduce water run-off back into the ground while minimising flood risk.

D1 TOWER, DUBAI, UAE

D1 is a residential development, adjacent to the Palazzo Versace Dubai, a luxury hotel and resort in Culture Village. This 80-floor luxury residential building is 284 m tall and features a sky rise lounge, private cinema, indoor pool, gymnasium, and concierge services. Terrain P.A.P.A.® has been installed in the D1 Tower, providing a simplified but efficient drainage ventilation solution. It helps to mitigate the risks commonly associated with super high-rise drainage systems such as bad odours and environmental and public health issues.

 $P.A.P.A.^{\circledast}$ is a registered trademark owned by Akatherm BV, part of the Aliaxis Group.

Terrain FUZE Technical Manual 2023 Terrain FUZE Technical Manual 2023

Terrain FUZE Technical Manual 2023

Base of Stack/Transition Areas

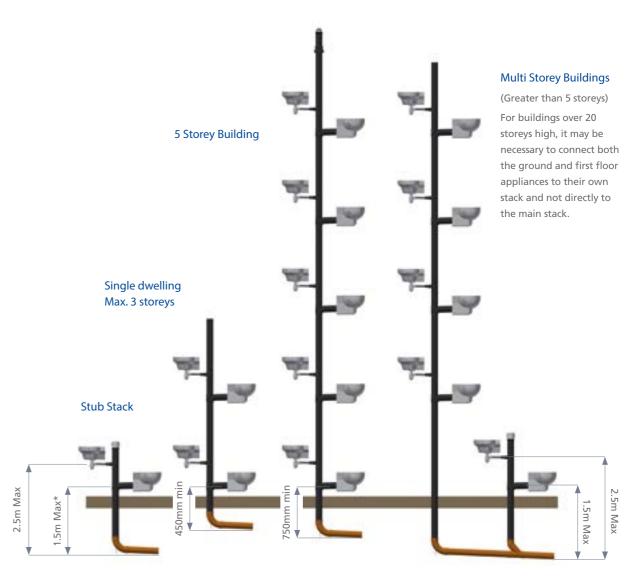
When foul water and air discharge down a drainage stack, reaching the base of the stack, it will need to change direction to flow horizontally into either a high-level collector drain or into the below-ground drainage system.

The flow velocity in the horizontal drainage pipework will be controlled by the installed gradient and pipe diameter; this will be appreciably less than the velocity of the vertical drainage stack. At the base of the drainage stack the waste water discharge undergoes a rapid deceleration in velocity, creating an increase in the depth of the flow at the change of direction. This increase in depth is generally sufficient to fill the cross section area of the pipe.

This phenomenon is known as the 'hydraulic jump'.

The distance at which the hydraulic jump occurs varies from immediately at the stack change of direction, up to 10 times the diameter of the stack downstream.

This is dependant upon


- The entrance velocity
- Depth of water that may already exist within the horizontal drainage pipe
- Roughness co-efficient of the pipe
- Pipe diameter
- Pipe gradient
- Bend formation at the base of the stack

The surged flow condition will extend until the frictional resistance of the pipe reduces the velocity to the designed flow condition.

To mitigate the air fluctuation problems associated at the base of the drainage stack, Building Regulations Approved Document H, states that the following design details are to be incorporated.

Base of Stack Requirements

^{*} BS EN 12056-2 states 1.5m from the invert of the pipe to the centre line of the branch.

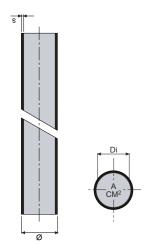


PRODUC	СТ			HDPE RIN	G SEAL SOC	KET		
	DE	CODE	Ø mm	S mm	L mm	H mm	DE mm	WEIGHT Kg
		910P.110B	110	4.3	176	6	130	0.43
		910P.160B	160	6.7	230	6	185	1.24
	<u> </u>	910P.200B	200	6.7	270	6	226	1.815
	'	910P.250B	250	8.3	300	7	284	5.14
		910P.315B	315	10.4	320	9	354	7.33
	_ Ø →							

HDPE EXPANSION JOINT WITH CAP											
911.40B	40	3	57	245	35	171	30	35	85	110	0.099
911.50B	50	3	67	245	35	171	30	35	85	110	0.122
911.56B	56	3	73	245	35	171	28	35	85	110	0.136
911.75B	75	3	93	245	35	171	26	35	85	110	0.181
911.110B	110	3.5	130	255	41	174	36	32	85	110	0.521
911.160B	160	6.2	192	264	44	184	35	32	85	110	0.839
911.200B*	200	6.2	228	350	80	-	-	-	85	110	1.85
911.250B°	250	7.8	280	440	183	-	-	-	85	110	3.38
911.315B°	315	9.8	350	480	183	-	-	-	85	110	6.1

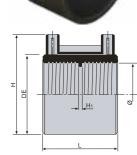
[°] Without cap * For rigid support

HDPE RING SEAL ADAPTOR WITH CAP											
Ø/Ø ₁ mm	S mm	DE mm	L mm	L ₁ mm	WEIGHT Kg						
40	3	57	104	35	0.038						
50	3	67	104	35	0.053						
56	3	73	104	35	0.059						
75	3	93	104	35	0.076						
110	3.5	130	112	31	0.203						
160	6.2	192	184	85	0.785						
200	6.2	225	170	18	1.075						
250	7.8	278	170	22	1.37						
315	9.8	350	180	22	1.97						
	0/0 ₁ mm 40 50 56 75 110 160 200 250	Ø/Ø₁ mm S mm 40 3 50 3 56 3 75 3 110 3.5 160 6.2 200 6.2 250 7.8	Ø/Ø₁ mm S mm mm DE mm 40 3 57 50 3 67 56 3 73 75 3 93 110 3.5 130 160 6.2 192 200 6.2 225 250 7.8 278	Ø/Ø1 mm S mm DE mm L mm 40 3 57 104 50 3 67 104 56 3 73 104 75 3 93 104 110 3.5 130 112 160 6.2 192 184 200 6.2 225 170 250 7.8 278 170	Ø/Ø1 mm S mm DE mm L mm L1 mm 40 3 57 104 35 50 3 67 104 35 56 3 73 104 35 75 3 93 104 35 110 3.5 130 112 31 160 6.2 192 184 85 200 6.2 225 170 18 250 7.8 278 170 22						


[°] Without cap * For rigid support

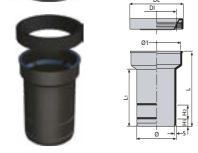
HDPE Pipes

4 Pipes and Fittings


HDPE PIPE (3m length)											
	Ø mm	Di mm	S mm	A cm²	PN	WEIGHT Kg/m					
900.40.30B	40	34	3	9	8	0.37					
900.50.30B	50	44	3	15.2	6.4	0.46					
900.56.30B	56	50	3	19.6	5.7	0.53					
900.75.30B	75	69	3	37.3	4.1	0.74					
900.110.30B	110	101.4	4.3	80.7	4	1.45					
900.160.30B	160	147.6	6.2	171.1	4	3.08					

	HDPE PIPE (5m length)											
CODE	Ø mm	Di mm	S mm	A cm²	PN							
900.40.50BME	40	34	3	9	8							
900.50.50BME	50	44	3	15.2	6.4							
900.56.50BME	56	50	3	19.6	5.7							
900.75.50BME	75	69	3	37.3	4.1							
900.110.50BME	110	101.4	4.3	80.7	4							
900.160.50BME	160	147.6	6.2	171.1	4							
900.200.50BME	200	184.6	7.7	267.6	6							
900.250.50BME	250	230.8	9.6	418.3	6							
900.315.50BME	315	290.78	12.11	663.2	6							

HDPE Fittings



	_	_	_	_	_	_						
	HDPE ELECTROFUSION COUPLINGS											
CODE	Ø mm	L mm	DE mm	H mm	H ₁ mm	WEIGHT Kg						
910.40B	40	62	54.5	72.6	2	0.075						
910.50B	50	61.8	62.2	78	1.8	0.07						
910.56B	56	61.8	68.2	84	1.8	0.077						
910.75B	75	61.8	87.8	103.5	1.8	0.106						
910.110B	110	61.8	176.5	191	1.8	0.283						
910.160B	160	153	227.8	242.2	3	1.467						
910.200B	200	153	278.5	292.6	3	1.909						
910.250B	250	153	345.5	358.3	3	2.496						
910.315B	315	153	350	365	3	2.61						


4 Pipes and Fittings

HDPE Fittings

PRODUCT	HDPE SLIDING CONNECTOR							
	CODE							
DE	911S.110B	110	4.3	196	140	1		
	911S.160B	160	6.7	110	192	0.936		
	911S.200B	200	6.7	270	226	1.445		
s	911S.250B	250	8.3	300	284	2.91		
 	911S.315B	315	10.4	320	354	5.1		

HDPE WC CONNECTOR FOR PVC WITH RING SEAL										
CODE Ø/Ø 1										
925.110100B	110/100	4.3	102±5	140	166	130	0.39			

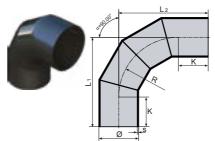
	HDPE MALE PVC ADAPTOR WITH RING SEAL											
9113.110100B	110/100	4.3	6	105	30	25	25	0.162				

	HDPE - PVC RING SEAL ADAPTOR											
CODE	Ø/Ø ₁ mm	S mm	DE mm	L mm	L ₁ mm	L ₂ mm	WEIGHT Kg					
927.4036B	40/36	3	49	93	35	53	0.035					
927.5036B	50/36	3	49	93	35	55	0.04					
927.5043B	50/43	3	56	93	35	53	0.041					
927.5636B	56/36	3	49	93	35	53	0.044					
927.5643B	56/43	3	56	93	35	53	0.047					

HDPE RIGID FIXING										
CODE	Ø mm	DE mm	ID mm	L mm	L ₁ mm	Z mm	WEIGHT Kg			
990.110B*	110	144	123	70	45	173	0.281			

[•] HDPE to HDPE * HDPE to PVC

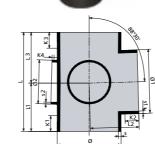
HDPE Fittings



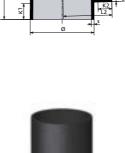
HDPE MECHANICAL COUPLING											
	Ø OD mm	OD TOLERANCE mm		D ₂ mm		SCREW SIZE	HEX SOCKET ADAPTER mm	WEIGHT Kg			
9110.90B*	90	89/92	65	101.4	145.4	M6 x 50	5	0.43			
9110.110B*	110	109/112	65	121.4	165.4	M6 x 50	5	0.47			
9110.160B*	160	159/162	65	171.4	215.4	M6 x 50	5	0.58			
9110.90C•	90	85/90	65	101.4	145.4	M6 x 50	5	0.43			
9110.110C•	114	110/114	65	125.4	169.4	M6 x 50	5	0.52			
9110.160C•	165	160/165	65	176.4	220.4	M6 x 50	5	0.61			

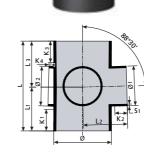
^{*} HDPE to HDPE • HDPE to Cast Iron

	HDPE 91.5° (88.5°) BEND											
CODE	Ø mm	S mm	L mm	K mm	WEIGHT Kg							
901.40.92B	40	3	54.6	30	0.038							
901.50.92B	50	3	59.5	30	0.053							
901.56.92B	56	3	62.4	30	0.062							
901.75.92B	75	3	71.7	30	0.09							
901.110.92B	110	4.3	95	30	0.244							
901.160.92B	160	6.2	118.3	30	0.651							



HDPE 90° WIDE RADIUS BEND											
CODE	Ø mm	S mm		L ₂ mm	K mm	R mm	WEIGHT Kg				
907.200.90B*	200	6.2	452	452	150	300	3.05				
907.250.90B*	250	7.8	627	627	250	375	6.4				
907.315.90B*	315	9.8	775	775	300	472.5	12				

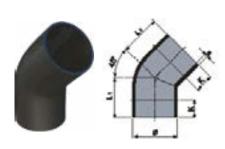



	HDPE EXTENDED SPIGOT BEND											
CODE	Ø/Ø ₁ mm	S mm	DE mm	L mm	L ₁ mm	R mm	K mm	WEIGHT Kg				
902.56.90B	56	3	50	100	80	-	-	0.085				
902.110.90B	110	4.3	-	300	60	60	220	0.5				

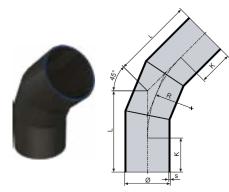
	HDPE 90° BRANCH															
	CODE	Ø mm	Ø ₁ mm	Ø ₂ mm	S mm	S ₁ mm	S ₂ mm	L mm	L ₁ mm	L ₂ mm	L ₃ mm	K ₁ mm	K ₂ mm	K ₃ mm	K ₄ mm	WEIGHT Kg
	904.40.90B	40	160	110	3	6.2	4.3	110.2	55.6	60.6	54.6	30	35	40	5	0.06
	904.50.90B	50	160	110	3	6.2	4.3	120.2	60.8	65.8	59.4	30	35	40	5	0.085
	904.56.90B	56	160	110	3	6.2	4.3	126.3	63.9	68.8	62.4	30	35	40	5	0.105
	904.75.90B	75	160	110	3	6.2	4.3	145.4	73.7	77.2	71.7	30	35	40	5	0.145
	904.110.90B	110	160	110	4.3	6.2	4.3	223.1	108	91	115.1	30	35	40	5	0.365
	904.160.90B	160	160	110	6.2	6.2	4.3	250	122	123	128	40	35	40	5	1.19
	904.200.90B*	200	160	110	6.2	6.2	4.3	800	400	400	400	150	35	40	5	1.705
F	904.250.90B*	250	160	110	7.8	6.2	4.3	800	400	400	400	250	35	40	5	3.1
0	904.315.90B*	315	160	110	9.8	6.2	4.3	984	492	492	492	300	35	40	5	6.15
	* Segmented															

			HDPI	REDUC	CING BR	ANCH 9	0°				
	Ø/Ø ₁ mm		S ₁ mm	L mm	L ₁ mm	L ₂ mm	L ₃ mm	K ₁ mm	K ₂ mm	K ₃ mm	
904.5040.90B	50/40	3	3	150	90	-	-	60	25	30	0.08
904.5650.90B	56/50	3	3	175	105	-	-	70	30	35	0.105
904.7540.90B*	75/40	3	3	210	105	107	105	75	60	75	0.18
904.7550.90B*	75/50	3	3	210	105	108	105	75	60	75	0.14
904.7556.90B	75/56	3	3	175	105	-	-	65	25	30	0.14
904.11040.90B	110/40	4.3	3	210	105	91	105	80	30	80	0.32
904.11050.90B	110/50	4.3	3	225	135	-	-	95	25	50	0.345
904.11056.90B	110/56	4.3	3	210	105	91	105	75	30	70	0.323
904.11075.90B	110/75	4.3	3	210	105	91	105	65	30	60	0.324
904.160110.90B	160/110	6.2	4.3	350	210	-	-	135	45	60	1.12
904.200110.90B*	200/110	6.2	4.3	450	225	434	225	150	150	150	2.1
904.200160.90B*	200/160	6.2	6.2	500	250	410	250	150	150	150	2.75
904.250110.90B*	250/110	7.8	4.3	650	325	463	325	250	150	250	4.3
904.250160.90B*	250/160	7.8	6.2	700	350	447	350	250	150	250	5
904.250200.90B*	250/200	7.8	6.2	750	375	425	375	250	150	250	5.4
904.315110.90B*	315/110	9.8	4.3	800	400	498	400	300	150	300	7.6
904.315160.90B*	315/160	9.8	6.2	820	410	486	410	300	150	300	8.2
904.315200.90B*	315/200	9.8	6.2	850	425	472	425	300	150	300	8.7
904.315250.90B*	315/250	9.8	7.8	900	450	446	450	300	250	300	9.1

^{*} Welded


HDPE Fittings

4 Pipes and Fittings


PRODUCT

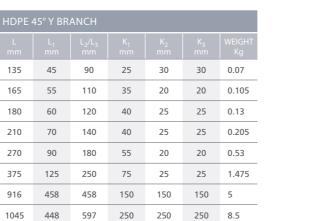
HDPE 112.5° (67.5°) BEND											
CODE	Ø mm	S mm	L mm	K mm	R mm	WEIGHT Kg					
901.110.112B*	110	4.3	125	50	142.5	0.34					
901.160.112B*	160	6.2	161	70	167	0.91					
901.200.112B*	200	6.2	183	80	188	1.30					
901.250.112B*	250	7.8	196	80	204.5	2.19					
901.315.112B*	315	9.8	295	139	295.5	5.2					

* Segmented

HDPE 45° BEND										
CODE	Ø mm	S mm	L ₁ mm	K mm	WEIGHT Kg					
901.40.135B	40	3	43.3	30	0.033					
901.50.135B	50	3	45.4	30	0.043					
901.56.135B	56	3	46.7	30	0.05					
901.75.135B	75	3	50.6	30	0.074					
901.110.135B	110	4.3	58.8	30	0.167					
901.160.135B	160	6.2	73.3	30	0.453					

HDPE 45° WIDE RADIUS BEND											
901.200.135B*	200	6.2	358	150	500	2.7					
901.250.135B*	250	7.8	510	250	625	6					
901.315.135B*	315	9.8	628	300	787.5	11.3					

* Segmented



HDPE 150° (30°) BEND											
CODE	Ø S L K R WEIGHT mm mm mm mm Kg										
901.110.150B*	110	4.3	50	35	57	0.15					
901.160.150B*	160	6.2	64	42	80.5	0.38					
901.200.150B*	200	6.2	113	86	101.5	0.86					
901.250.150B*	250	7.8	117	83	125	1.39					
901.315.150B*	315	9.8	128	85	160	2.41					

	Ø mm			K mm	R mm	WEIGHT Kg
901.110.165B*	110	4.3	43	35	59	0.13
901.160.165B*	160	6.2	50	39	79.5	0.30
901.200.165B*	200	6.2	92	79	97.5	0.70
901.250.165B*	250	7.8	99	82	126	1.18
901.315.165B*	315	9.8	104	84	154	1.97

^{*} Segmented

904.40.135B

904.56.135B

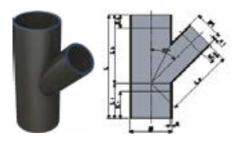
904.75.135B

904.110.135B

904.160.135B

904.200.135B*

904.250.135B*


4.3

6.2

6.2

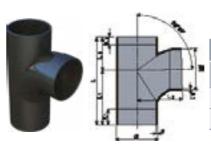
1045

160

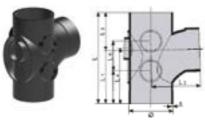
4 Pipes and Fittings

HDPE Fittings

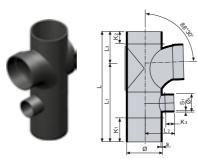
HDPE REDUCING Y BRANCH 45°											
	Ø/Ø ₁ mm	S mm	S ₁ mm	L mm	L ₁ mm	L ₂ mm		K ₁ mm	K ₂ mm	K ₃ mm	WEIGHT Kg
904.5040.135B	50/40	3	3	165	55	110	110	40	45	45	0.1
904.5650.135B	56/50	3	3	180	60	120	120	40	30	30	0.125
904.7540.135B*	75/40	3	3	210	68	158	142	70	70	70	0.19
904.7550.135B*	75/50	3	3	210	68	158	142	70	70	70	0.2
904.7556.135B	75/56	3	3	210	70	140	-	55	25	35	0.19
904.11040.135B*	110/40	4.3	3	240	59	183	181	70	70	70	0.38
904.11050.135B	110/50	4.3	3	270	90	180	-	95	50	55	0.44
904.11056.135B	110/56	4.3	3	270	90	180	-	90	40	45	0.455
904.11075.135B	110/75	4.3	3	270	90	180	-	75	30	35	0.47
904.16075.135B*	165/75	6.2	3	315	65	253	250	80	75	80	1.03
904.160110.135B	160/110	6.2	4.3	375	125	250	-	110	45	55	1.25
904.20075.135B*	200/75	6.2	3	500	150	604	350	150	150	150	2.246
904.200110.135B*	200/110	6.2	4.3	540	170	587	370	150	150	150	2.4
904.200160.135B*	200/160	6.2	6.2	540	170	562	370	150	150	150	2.7
904.250110.135B*	250/110	7.8	4.3	700	225	622	475	250	150	250	4.4
904.250160.135B*	250/160	7.8	6.2	780	264	597	516	250	150	250	4.85
904.250200.135B*	250/200	7.8	6.2	800	275	577	525	250	150	250	5
904.315110.135B*	315/110	9.8	4.3	850	267	668.5	583	300	150	300	8.6
904.315160.135B*	315/160	9.8	6.2	850	267	643	583	300	150	300	9.15
904.315200.135B*	315/200	9.8	6.2	900	292	623	608	300	150	300	9.45
904.315250.135B*	315/250	9.8	7.8	1000	342	598	658	300	250	300	9.25


*	Segmented
---	-----------

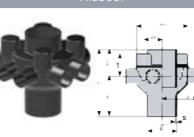
PRODUCT			HDP	E 60° DO	UBLE Y B	RANCH			
- Du DE	CODE	Ø/Ø ₁ mm		S ₁ mm	L mm		K ₁ mm	K ₂ mm	WEIGHT Kg
- Land 15:	906.5040.60B	50/40	3	3	55	110	40	50	0.093
	906.110.60B	110/110	4.3	4.3	90	120	50	-	0.393



HDPE 45° DOUBLE REDUCING BRANCH													
	CODE	Ø/Ø ₁ mm	S mm	S ₁ mm	L mm	L ₁ mm	L ₂ mm	L ₃ mm	L ₄ mm	K ₁ mm	K ₂ mm	K ₃ mm	WEIGHT Kg
	906.11040.135B*	110/40	4.3	3	240	59	183	183	181	75	75	75	0.42
	906.11050.135B*	110/50	4.3	3	238	60	183	190	178	75	75	75	0.43
	906.110.135B	110/110	4.3	4.3	338	110	180	180	228	50	30	50	0.738

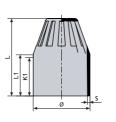

^{*} Segmented

	HDPE SWEPT BRANCH FITTING												
CODE	Ø/Ø ₁ mm	S/S ₁ mm	L mm	L ₁ mm	L ₂ mm	L ₃ mm	K ₁ mm	K ₂ mm	K ₃ mm	WEIGHT Kg			
904.56.92B	56	3	137	78	70.3	59	25	25	25	0.106			
904.110.92B	110/110	4.3	230	140	120	90	90	40	20	0.415			



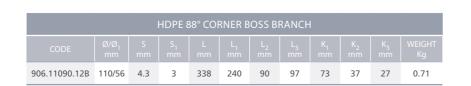

ı	HDPE 92.5° (87.5°) SWEPT ENTRY BOSSED BRANCH												
	CODE	Ø mm	S mm	L mm	L ₁ mm	L ₂ mm	L ₃ mm	L ₄ mm	L ₅ mm	L ₆ mm	WEIGHT Kg		
Ī	904.110.925B	110	4.3	225	135.1	119.9	89.9	140	84	75	0.539		

HDPE 88° SINGLE BOSS BRANCH												
CODE	Ø/Ø ₁ mm	S mm	S ₁ mm	L mm		L ₂ mm					WEIGHT Kg	
904.11090.12B	110/56	4.3	3	338	240	90	97	73	37	27	0.575	

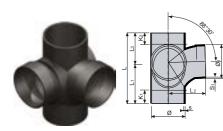


HDPE WEATHERING APRON												
CODE	Ø mm	DE mm	S mm	L mm	L ₁ mm	A mm	WEIGHT Kg					
931.110.200B	110	131	4.3	93.5	42.5	200	0.242					

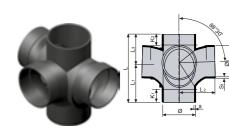
919.110.56B 110/56 4.3 3 255 153 138 102 85 100 200



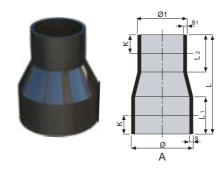
HDPE VENT COWL												
HDPE VENT COWL												
CODE												
950.75B	75	3	118	68.5	63.5	0.074						
950.110B	110	4.3	151	80	75	0.191						
950.160B	160	6.2	192	100	95	0.528						

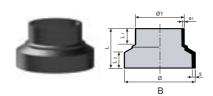

4 Pipes and Fittings

HDPE Fittings



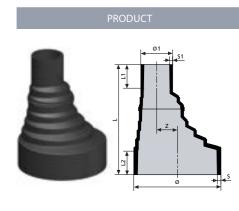
906.110.92B 110/110 4.3 231 134


920.160.56B 160/56 6.2

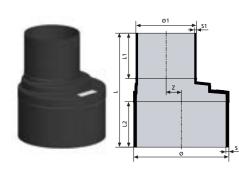


HDPE 88° CORNER BRANCH											
CODE	Ø mm	S mm	L mm	L ₁ mm	L ₂ mm	L ₃ mm	K ₁ mm	K ₂ mm	WEIGHT Kg		
906.11090.92B	110	4.4	231	134	120	97	43	37	0.479		

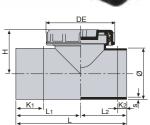
	HDPE 88° 3 WAY CORNER BRANCH												
CODE	Ø mm	S mm	L mm	L ₁ mm	L ₂ mm	L ₃ mm	K ₁ mm	K ₂ mm	WEIGHT Kg				
906.11093.92B	110	4.4	231	134	120	97	43	37	0.579				



HDPE CONCENTRIC REDUCERS												
CODE	Ø/Ø ₁ mm	S mm	S ₁ mm	L mm	L ₁ mm	L ₂ mm	K mm	WEIGHT Kg				
924.5040B	50/40	3	3	108	30	60	15	0.053				
924.5650B	56/50	3	3	108	30	60	15	0.061				
924.7540B	75/40	3	3	80	30	30	15	0.045				
924.7550B	75/50	3	3	80	30	30	15	0.05				
924.7556B	75/56	3	3	80	30	30	15	0.06				
924.11040B	110/40	4.3	3	80	30	30	15	0.09				
924.11050B	110/50	4.3	3	80	30	30	15	0.115				
924.11056B•	110/56	4.3	3	80	30	30	15	0.095				
924.11075B	110/75	4.3	3	80	30	30	15	0.125				
924.160110B•	160/110	6.2	4.3	115	30	30	15	0.255				
924.200160B	200/160	9.2	6.2	180	60	60	20	0.325				

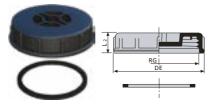

4 Pipes and Fittings

HDPE Fittings

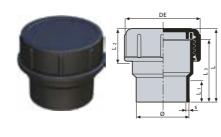

	HDPE ECCENTRIC REDUCER											
CODE	Ø/Ø ₁ mm	S mm	S ₁ mm	L mm	L ₁ mm	L ₂ mm	Z mm	WEIGHT Kg				
923.5040B	50/40	3	3	80	35	35	-	0.035				
923.5640B	56/40	3.5	3.5	120	64.59	31.05	-	0.064				
923.5650B	56/50	3	3	108	35	60	-	0.064				
923.7540B	75/40	3	3	80	37	35	-	0.055				
923.7550B	75/50	3	3	80	37	35	-	0.05				
923.7556B	75/56	3	3	80	37	35	-	0.05				
923.11040B*	110/40	4.3	3	140	30	30	26	0.095				
923.11050B*	110/50	4.3	3	132	30	30	22	0.125				
923.11056B	110/56	4.3	3	80	37	35	-	0.1				
923.11075B	110/75	4.3	3	80	37	35	-	0.105				
923.160110B	160/110	6.2	4.3	80	37	35	-	0.23				

^{*} Segmented

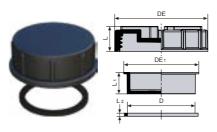
HDPE LONG ECCENTRIC REDUCER												
CODE	Ø/Ø ₁ mm	S mm	S ₁ mm	L mm	L ₁ mm	L ₂ mm	Z mm	WEIGHT Kg				
923.160110LB	160/110	6.2	4.3	215	35	37	-	0.43				
923.200110LB*	200/110	6.2	4.3	353.5	150	150	39	0.821				
923.200160LB*	200/160	6.2	6.2	354	150	150	18	1.084				
923.250200LB*	250/200	7.8	6.2	333.5	150	150	22	1.661				
923.315200LB*	315/200	9.8	6.2	377	150	150	50	2.658				
923.315250LB*	315/250	9.8	7.8	353	150	150	28	2.793				



	HDPE 90° ACCESS PIPE WITH SCREW CAP													
CODE	Ø/Ø ₁ mm	S mm	L mm	L ₁ mm	L ₂ mm	H mm	DE mm	K ₁ mm	K ₂ mm	WEIGHT Kg				
938.50.90B	50	3	150	90	60	75	82	55	25	0.13				
938.56.90B	56	3	175	105	70	84	82	65	30	0.195				
938.75.90B	75	3	175	105	70	117	82	55	25	0.365				
938.110.90B	110	4.3	240	140	100	94	146	65	20	0.62				
938.160.90B	160	6.2	350	210	140	145	146	105	30	1.355				
938.200.90B*	200	6.2	500	250	250	200	192	150	150	2.73				
938.250.90B*	250	7.8	700	350	350	226	192	250	250	4.16				
938.315.90B*	315	9.8	820	410	410	259	192	300	300	7.97				

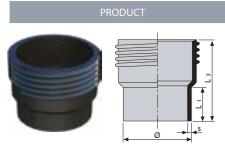

^{*} Segmented Use Canvas style test bung

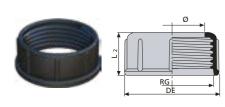
HDPE Fittings


PRODUCT		Н	IDPE 4	5° ACC	ESS PII	PE WIT	h scre	EW CAF	P		
	CODE	Ø/Ø ₁ mm		S ₁ mm	L mm	L ₁ mm	L ₂ mm	H mm	DE mm	K ₁ mm	WEIGHT Kg
	938.110.135B	110/110	4.3	4.3	270	90	180	220	150	55	0.84
	938.160.135B	160/110	6.2	4.3	375	125	275	280	150	110	1.76

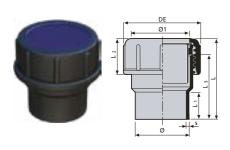
HDPE SHORT END CAP WITH SEAL										
CODE	Ø mm	RG mm	DE mm	L ₂ mm	WEIGHT Kg					
9938.110B	110	132	149	33	0.215					

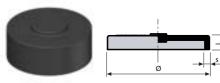
	HDPE SCREWED END CAP											
i	CODE		S mm	L mm	L ₁ mm	L ₂ mm	L ₃ mm	DE mm				
	936.40B	40	3	75	30	34	66	60	0.075			
	936.50B	50	3	75	30	33	66	70	0.08			
,	936.56B	56	3	77	30	34	66	80	0.12			
	936.75B	75	3	103	30	45	87	109	0.28			
	936.110B	110	4.3	106	30	65	89	144	0.5			
	936.160B	160	4.3	95	35	48	1	191	0.814			


HDPE END CAP WITH SEAL											
CODE	D mm	DE mm	DE ₁ mm	L mm	L ₁ mm	L ₂ mm	WEIGHT Kg				
9936.56B	56	82	-	39	3.5	-	0.062				
9936.110B	110	149	120	41	34.5	5	0.314				

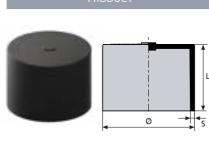

		HDPE	SHORT	SCREWE	D CAP			
CODE	Ø mm	S mm	L mm	L ₁ mm	L ₂ mm	DE mm	K mm	WEIGHT Kg
935.110B	110	4.3	63	12	33	50	149	0.315

4 Pipes and Fittings

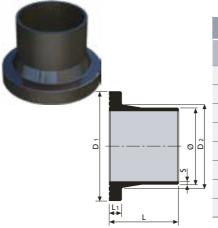

HDPE Fittings


HDPE THREADED UNION											
CODE	Ø mm	S mm		L ₂ mm	WEIGHT Kg						
9122.50B	50	3	30	66	0.03						
9122.56B	56	3	30	66	0.025						
9122.75B	75	3	30	87	0.095						
9122.110B	110	4.3	30	89	0.17						

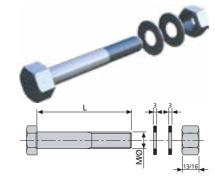
HDPE NUT										
CODE	Ø mm	RG mm	DE mm	L ₂ mm	WEIGHT Kg					
9120.50B	50	62	70	33	0.03					
9120.56B	56	71	80	34	0.05					
9120.75B	75	96	100	45	0.1					
9120.110B	110	132	144	65	0.20					



HDPE THREADED COUPLING												
CODE	Ø/Ø ₁ mm	S mm	L mm	L ₁ mm	L ₂ mm	L ₃ mm	DE mm	WEIGHT Kg				
912.40B	40	3	74	30	34	66	60	0.075				
912.50B	50	3	76	30	33	66	70	0.08				
912.56B	56	3	46	30	34	66	80	0.12				
912.5663B	56/63	3	48	-	34	66	80	0.1				
912.75B	75	3	106	30	45	87	109	0.25				
912.110B	110	4.3	113	30	65	89	144	0.47				



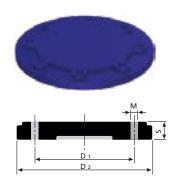
			HDPE BLANK END		
Ţ	CODE	Ø mm	S mm	L mm	WEIGHT Kg
<u>¥</u>	930.40B	40	3	15	0.009
	930.50B	50	3	15	0.013
	930.56B	56	3	15	0.016
	930.75B	75	3	15	0.024
	930.110B	110	4.3	15	0.061
	930.160B	160	6.2	15	0.164
	930.200B	200	6.2	110	0.56
	930.250B	250	7.8	93	0.75
	930.315B	315	9.2	117	1.42


HDPE Fittings

	HDPE LONG BLANK END											
	CODE	Ø mm	S mm	L ₁ mm	L ₂ mm	WEIGHT Kg						
<u></u>	930.40LB	40	3	68.5	66	0.032						
	930.50LB	50	3	68.5	66	0.042						
-	930.56LB	56	3	68.5	66	0.048						
<u>*</u>	930.75LB	75	3	68.5	66	0.069						
S	930.110LB	110	4.3	80	87	0.17						
	930.160LB	160	6.2	107	89	0.505						

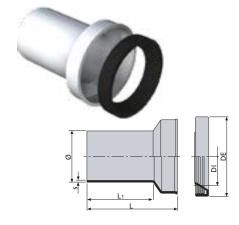
HDPE FLANGE ADAPTORS												
980.50B	50	3	88	61	52	12	0.075					
980.56B	56	3	94	72	90	12	0.115					
980.75B	75	3	122	89	90	15	0.185					
980.110B	110	4.3	158	120	100	18	0.335					
980.160B	160	6.2	212	175	100	18	0.585					
980.200B	200	6.2	268	232	100	20	0.92					
980.250B	250	7.8	320	285	100	20	1.48					
980.315B	315	9.8	370	236	100	20	1.72					

HDPE GALVANISED BOLT SET WITH WASHER FOR FLANGE											
CODE MØ L THREAD FOR FLANGE WEIGHT Mm Kg											
984.1650B	16	90	38	50-56	0.215						
984.1663B	16	100	38	63-75	0.23						
984.16110B	16	100	38	110-125-140	0.25						
984.20160B	20	110	46	160	0.41						
984.20250B	20	130	58	200-250-315	0.45						
Material: Galvanise	d steel										

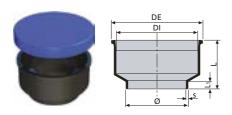


	FLAT RUBBER	SEAL FOR FLANGE	
CODE	Ø mm	S mm	WEIGHT Kg
982.50B	50	3	0.02
982.56B	56	3	0.02
982.75B	75	3	0.03
982.110B	110	3	0.045
982.160B	160	3	0.07
982.200B	200	3	0.11
982.250B	250	3	0.14
982.315B	315	3	0.14

4 Pipes and Fittings

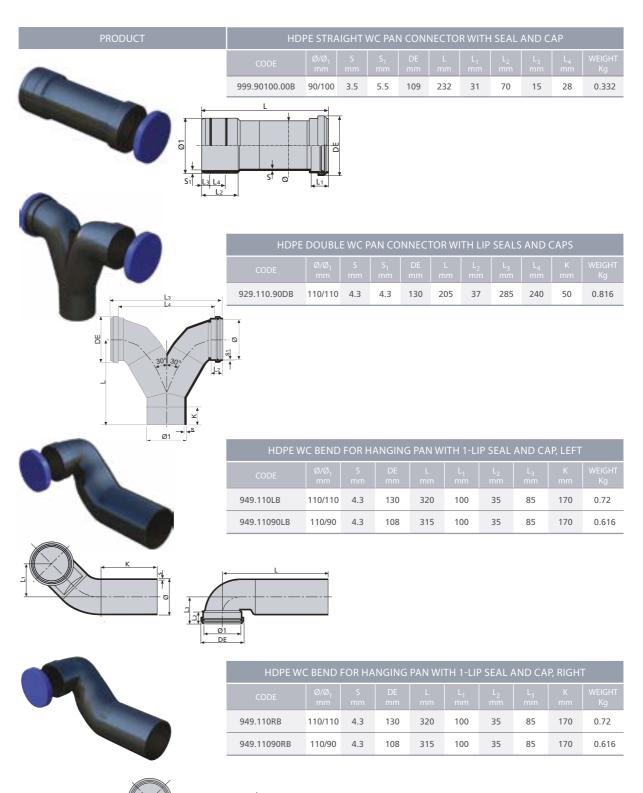

PRODUCT		PAINTED ALUMINIUM BACKING FLANGE								
	CODE	Ø mm	S mm	DI mm	D ₁ mm	D ₂ mm	M mm	HOLE No	WEIGHT Kg	
	981.50B	50	20	62	120	150	18	4	0.625	
	981.56B	56	20	64	123	159	18	4	0.71	
	981.75B	75	21	93	148	185	18	4	0.885	
u DI J M.	981.110B	110	22	128	182	220	19	8	1.05	
	981.160B	160	25	179	240	285	22	8	1.84	
<u> </u>	981.200B	200	26	235	295	337	22	8	2.325	
D 1 D 2	981.250B	250	30	285	350	396	22	12	3.78	
	981.315B	315	30	340	400	444	22	12	3.945	

Manufactured to EN1092-1/04 PN10/16



	PAINTED ALUMINIUM BLANK FLANGE												
CODE	Ø mm	S mm	D ₁ mm	D ₂ mm	M mm	HOLE No	WEIGHT Kg						
983.50B	50	20	120	150	18	4	0.76						
983.56B	56	20	123	159	18	4	0.865						
983.75B	75	21	148	185	18	4	1.305						
983.110B	110	22	176	220	19	8	1.7						
983.160B	160	25	240	285	22	8	2.945						
983.200B	200	26	295	337	22	8	4.485						
983.250B	250	30	350	396	22	12	7.495						
983.315B	315	30	400	444	22	12	9.345						

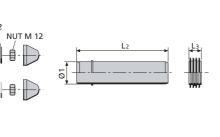
Manufactured to EN1092-1/04 PN10/16

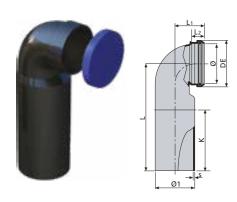


	H	HDPE WC F	PAN CONN	IECTOR - \	WHITE						
	Ø mm										
925.110W	110	4.3	102±5	140	166	130	0.355				

HDPE WC PAN CONNECTOR WITH CAP											
CODE											
925.110B	110	4.3	120	131	68	15	0.13				

HDPE Fittings

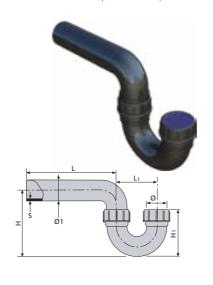




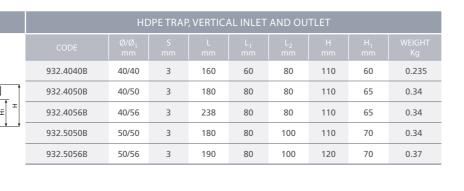
	1
K L	Li
s Ø	Ē

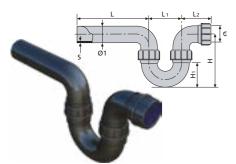
HDPE UNIVERSAL TRAP, VERTICAL INLET AND HORIZONTAL OUTLET											
CODE	Ø mm	S mm	L mm	L ₁ mm	L ₂ mm	H mm	H ₁ mm	K mm	WEIGHT Kg		
931.75B	75	3	210	135	245	335	245	140	0.92		
931.110B	110	4.3	270	160	310	370	260	220	1.92		

925.11044B


4 Pipes and Fittings

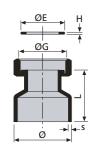
HDPE Fittings


HDPE WC BEND HANGING PAN WITH SEAL AND CAP											
CODE	Ø/Ø ₁ mm	S mm	L mm	L ₁ mm	L ₂ mm	DE mm	K mm	WEIGHT Kg			
999.110.90B	110/110	4.3	300	87	40	130	180	0.596			


110/110 4.3 3.5 108 335 100

110/45 4.3 102±5 132

HDPE TRAP, VERTICAL INLET AND HORIZONTAL OUTLET											
CODE	Ø/Ø ₁ mm	S mm	L mm	L ₁ mm	H mm	H ₁ mm	WEIGHT Kg				
931.4040B	40/40	3	150	80	140	110	0.22				
931.4050B	40/50	3	180	80	160	110	0.31				
931.4056B	40/56	3	210	80	155	110	0.31				
931.5050B	50/50	3	180	100	170	110	0.31				
931.5056B	50/56	3	210	100	165	110	0.31				



4 Pipes and Fittings

HDPE Fittings

HDPE TRAP, HORIZONTAL INLET AND OUTLET											
CODE	Ø/Ø ₁ mm				L ₂ mm		H ₁ mm	WEIGHT Kg			
945.4040B	40/40	3	150	80	90	140	40	0.31			
945.4050B	40/50	3	180	80	90	160	65	0.37			
945.4056B	40/56	3	210	80	90	160	40	0.4			
945.5050B	50/50	3	180	100	90	170	70	0.42			

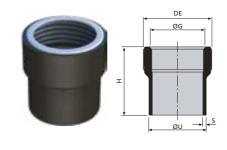
	HDPE FITTING WITH NUT - BRASS											
CODE	Ø mm	ØG	S mm	L mm	ØE mm	H mm	NUT	WEIGHT Kg				
918.40.125BN	40	11/4"	3	45	40	2	Brass	0.08				
918.40.15BN	40	1½"	3	45	45	2	Brass	0.09				
918.50.125BN	50	11/4"	3	45	40	2	Brass	0.08				
918.50.15BN	50	1½"	3	45	45	2	Brass	0.09				

		HDPE F	ITTING V	VITH NUT	- PLAST	IC		
CODE	Ø mm	ØG	S mm	L mm	ØE mm	H mm	NUT	WEIGHT Kg
918.40.125PN	40	11/4"	3	45	40	2	Plastic	0.03
918.40.15PN	40	1½"	3	45	45	2	Plastic	0.03
918.50.125PN	50	11/4"	3	45	40	2	Plastic	0.03
918.50.15PN	50	1½"	3	45	45	2	Plastic	0.03

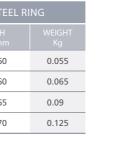
HDPE EXTENDED FITTING WITH NUT - PLASTIC										
	Ø mm	ØG mm	S mm		ØE mm	H mm	Nut mm			
918.40.125EPN	40	11/4"	3	195	40	2	Plastic	110	0.08	
918.40.15EPN	40	1½"	3	195	45	2	Plastic	110	0.085	
918.50.125EPN	50	11/4"	3	195	40	2	Plastic	110	0.1	
918.50.15EPN	50	1½"	3	195	45	2	Plastic	110	0.095	

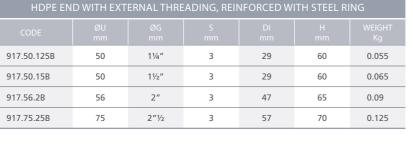
195

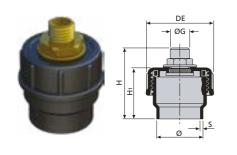
40 2 Brass 110


2 Brass 110

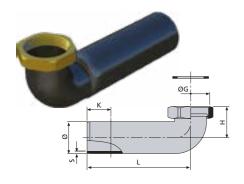
40 11/4"

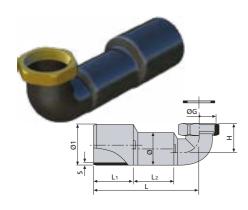

918.40.125EB


918.40.15EBN

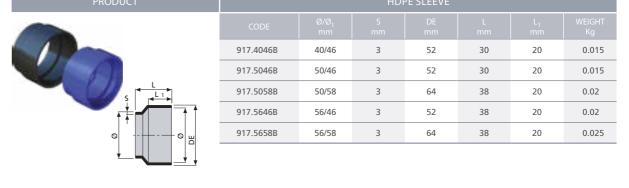

918.50.125EBN

HDPE END	HDPE END WITH INTERNAL THREADING, REINFORCED WITH STEEL RING									
CODE	ØU mm	ØG mm	S mm	DE mm	H mm	WEIGHT Kg				
916.40.05B	40	1/2"	3	40.5	55	0.065				
916.40.075B	40	3/4"	3	40.5	55	0.06				
916.40.1B	40	1"	3	40.5	55	0.06				
916.50.05B	50	1/2"	3	50	60	0.075				
916.50.075B	50	3/4"	3	50	60	0.075				
916.50.1B	50	1"	3	50	60	0.075				
916.50.125B	50	11/4"	3	50	60	0.07				
916.50.15B	50	1½"	3	58.5	60	0.07				
916.56.2B	56	2"	3	70	65	0.1				
916.75.25B	75	2"½	3	89	70	0.135				




4 Pipes and Fittings

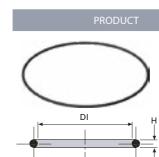
HDPE Fittings

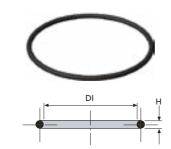

HDPE THREADED FITTING WITH BRASS NIPPLE										
	Ø mm	ØG mm	S mm	DE mm	H mm	H ₁ mm	WEIGHT Kg			
936.40.05NB	40	½" x 15mm	3	60	81	74	0.18			
936.40.075NB	40	¾" x 18mm	3	60	84	74	0.24			
936.50.05NB	50	½" x 15mm	3	71	92	76	0.15			
936.50.075NB	50	¾" x 18mm	3	71	95	76	0.185			
936.50.1NB	50	1" x 22mm	3	71	95	76	0.245			



HDPE BEND WITH NUT									
				L mm					
918.40.125.90BN	40	11/4"	3	130	25	Brass	100	0.1	
918.40.15.90BN	40	1½"	3	130	30	Brass	100	0.105	
918.40.15.90PN	40	1½"	3	130	30	Plastic	100	0.04	

HDPE REDUCING BEND WITH NUT										
CODE	Ø mm	ØG mm	S mm	L mm	L ₁ mm	H mm	Nut mm	K mm	WEIGHT Kg	
918.4050.125.90BN	40/50	11/4"	3	130	50	54	25	Brass	0.11	
918.4050.15.90BN	40/50	1½"	3	120	50	N.C.	30	Brass	0.12	
918.4050.15.90PN	40/50	1½"	3	120	50	N.C.	30	Plastic	0.055	




GASKET									
CODE	Ø ₁ mm	Ø ₂ mm	L mm	WEIGHT Kg					
917.4624.908B	46	24-46	22	0.01					
917.4636.908B	46	36-40	22	0.01					
917.5836.908B	58	36-40	22	0.2					
917.5847.908B	58	47-50	22	0.3					

HDPE SPIGOT BEND WITH CAP									
CODE	Ø/Ø ₁ mm	S mm	DE mm	L mm	L ₁ mm	L ₂ mm	WEIGHT Kg		
917.4046.90B	40/46	3	52	60	51	22	0.055		
917.5046.90B	50/46	3	52	62	51	22	0.06		
917.5058.90B	50/58	3	64	68	55	24	0.07		
917.5646.90B	56/46	3	52	64	60	22	0.07		
917.5658.90B	56/58	3	64	65	60	22	0.075		

HDPE Spares

HDPE O RING FOR SOCKETS									
				WEIGHT Kg					
9116.40B	40	39+1	6	0.005					
9116.50B	50	49+1	6	0.005					
9116.75B	75	79+1	6	0.01					
9116.110B	110	109+1.5	7	0.015					
9116.160B	160	159+1.5	9	0.035					

2.62

353-354

0.002

100

9113.908B

HDPE Spares

4 Pipes and Fittings

9130.40B

9130.50B 9130.56B

9130.110B

9130.160B

9130.200B

40

56

110

160

HDPE RING								
	D mm	DE mm	S mm	WEIGHT Kg				
9118.50B	50	58	3.5	0.003				
9118.56B	56	63	3.5	0.003				
9118.75B	75	84	4	0.007				
9118.110B	110	121	4	0.011				

167

0.01

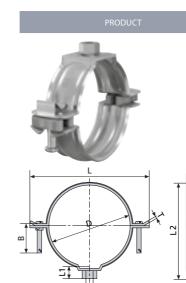
0.04

0.055

39

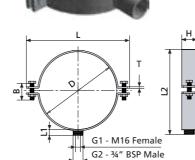
36

	HDPE RING SEAL									
CODE	D mm	DE mm	S mm	WEIGHT Kg						
9119.50B	50	56	6	0.004						
9119.56B	56	61	6	0.004						
9119.75B	75	82	10	0.006						
9119.110B	110	121	10	0.008						



HDPE 1 LIP SEAL FOR SOCKETS									
CODE	Ø mm	DE mm	H mm	B mm	WEIGHT Kg				
927.100.908B	100	114	9.3	8.2	0.02				
927.110.908B	110	123.9	8.9	7.9	0.02				
927.160.908B	160	179.8	11.5	10.2	0.045				
927.200.908B	200	223.7	12.8	11.2	0.045				
927.250.908B	250	282	19.5	1.6	0.5				
927.315.908B	315	350	20.5	17.15	0.055				

HDPE SEAL FOR EXPANSION SOCKETS									
CODE	Ø mm	H mm	B mm	DE mm	WEIGHT Kg				
911.40.908B	40	16	12	60	0.025				
911.50.908B	50	16	12	70	0.035				
911.56.908B	56	16	12	76	0.04				
911.75.908B	75	16	12.5	95.5	0.05				
911.110.908B	110	16	12.5	130.5	0.07				
911.160.908B	160	16	12.5	180.5	0.115				
911.200.908B	200	21.8	11.2	223.7	0.045				


HDPE Anchors and Brackets

M10 ANCHOR/GUIDE BRACKET									
CODE	Ø mm	H mm	L mm	L ₁ mm	L ₂ mm	T mm	G mm	B mm	WEIGHT Kg
9140.40B	40	28	84	11	55	2.5	M10 F	M6 x 30	5.5
9140.50B	50	28	95	11	62	2.5	M10 F	M6 x 30	5.99
9140.56B	56	28	101	11	70	2.5	M10 F	M6 x 30	7.93
9140.75B	75	28	120	11	90	2.5	M10 F	M6 x 40	9.12
9140.110B	110	28	162	17	131	2.5	M10 F	M6 x 40	7.09
9140.160B	160	28	210	17	218	2.5	M10 F	M6 x 40	9.15
9140.200B	200	40	272	20	224	4	M16 F/ ¾" BSP M	M10 x 50	10.8
9140.250B	250	50	354	32	288	6	M16 F/ ¾" BSP M	M12 x 60	6.05
9140.315B	315	50	423	32	353	6	M16 F/ ¾" BSP M	M12 x 60	7.33

To use as an anchor point, remove spacer. Material: Zinc plated steel.

M16 BRACKET										
CODE	D mm	H mm	L mm	L ₁ mm	L ₂ mm	T mm	G mm	B mm	WEIGHT Kg	
9149.200B	200	40	272	20	224	4	M16 F/ ¾" BSP M	M10 x 50	2.18	
9149.250B	250	50	354	32	288	6	M16 F/ ¾" BSP M	M12 x 60	2	
9149.315B	315	50	423	32	353	6	M16 F/ ¾" BSP M	M12 x 60	2.414	

HDPE pipe anchoring shells not required. Material: Zinc plated steel.

4 Pipes and Fittings

HDPE Firetraps

FIRETRAP COLLAR								
CODE	Size mm	ØD mm	H mm	Colour	WEIGHT Kg			
1625.40R	40	54	30	RED	0.06			
1625.55R	55	69	30	RED	0.08			
1625.63R	63	79	30	RED	0.1			
1625.75R	75	89	30	RED	0.1			
1625.82R	82	96	30	RED	0.1			
1625.90R	90	112	30	RED	0.18			
1625.110R	110	132	30	RED	0.22			
1625.125R	125	147	45	RED	0.34			
1625.160R	160	174	45	RED	0.37			
1625.200R	200	194	45	RED	0.7			
1625.250R	250	300	130	RED	2.9			
1625.315R	315	373	130	RED	3.5			

1925.21

1925.27

1925.34

1925.42

1925.48

1925.54

1925.60

1925.76

1925.89

1925.102

1925.108

1925.114

1925.127

1925.134 1925.140

1925.169

0	
L J	
T	L2

ACOUSTIC PIPE BRACKET									
CODE	Ø mm	H mm	L mm	L ₁ mm	L ₂ mm	T mm	G mm	B mm	WEIGHT Kg
9140.110R	110	23	153	20	134	2.5	M10 F	M6 x 25	6.46
9140.160R	160	30	220	20	200	2.5	M10 F	M6 x 25	9.07

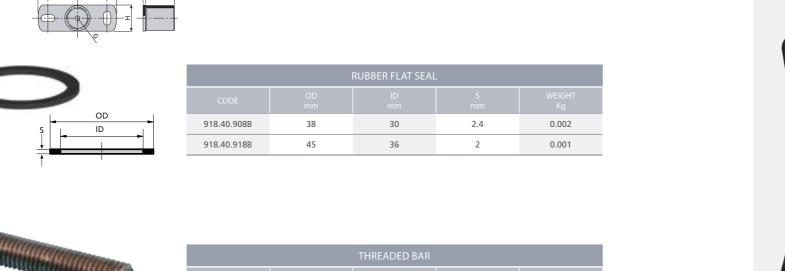
Material: Zinc plated steel.

Terrain FUZE Electrofusion Welding Machine

PRODUCT CODE: 9000.40315.110V

Supplied complete with yellow cable for pipe diameters up to and including 160mm and blue cables for pipe diameters greater than 160mm.

PART NUMBER	DESCRIPTION	PIPE DIAMETERS
AW00-2003	Yellow replacement leads	Up to and including 160mm
AW00-2004	Blue replacement leads	Above 160mm


General properties

Pipe diameters: 40-315mm

Supply protection: Class 1 – earthed

Operating temp.: -15oC to +45oC

Size: 410 x 350 x 200mm Protection level: IP65

1000

1000

1.5

82

40

20

4

0.165

0.628

Ma.	•	Supply voltage: 110V
	•	Pipe diameters: 40-31
	•	Supply current: 10A
	•	Supply power: 3500W
	•	Supply protection: Cla
	•	Weight: 15Kg
	•	Size: 410 x 350 x 200m
5	•	Protection level: IP65
	•	Operating temp.: -150

4 Pipes and Fittings

HDPE Anchors and Brackets

9148.10B

9148.25B

9147B

9149B

10

16

120

1/2"

RUBBER STRIP INSERT								
	L mm		H mm	H ₁ mm				
9104.40B	30	34	4	2	5.015			

ANTI VIBRATION RUBBER INSERT FOR CLIPS (30 METRE LENGTH)							
	L mm		H mm	H ₁ mm	WEIGHT Kg		
9105.30B	30	36	9	3	6.11		

Tooling

Terrain FUZE Technical Manual 2023

Pipe Cutter – Model T1 9500.663T Pipe Cutter – Model T2 50 to140mm 9500.100160T Pipe Cutter – Model T3 100 to 160mm **General properties**

Model T1

- Weight: 0.6Kg
- Pipe diameters: 40-63mm

Model T2

- Weight: 1.4Kg
- Pipe diameters: 50-140mm

Model T3

- Weight: 1.6Kg
- Pipe diameters: 100-160mm

SPARE CUTTING WHEELS					
CODE					
9501.168T	50 T0 160mm				

TERRAIN FUZE PIPE CHAMFER TOOL						
CODE						
9502.32160T	Pipe Chamfer Tool – Model 1	32 to 1603mm				
9500.50140T	Pipe Chamfer Tool – Model 2	40 to 250mm				

General properties

Model 1

- Weight: 0.8Kg
- Pipe diameters: 32-160mm

Model 2

- Weight: 1.4Kg
- Pipe diameters: 450-250mm

Pipe Scraper

Product code: 9507T

4 Pipes and Fittings

HDPETrapped Floor Gully

110

75

979.11075.50B

General properties

Manufactured to BS EN 1519

Creates a 75mm water seal

Witness lines at 45deg increments

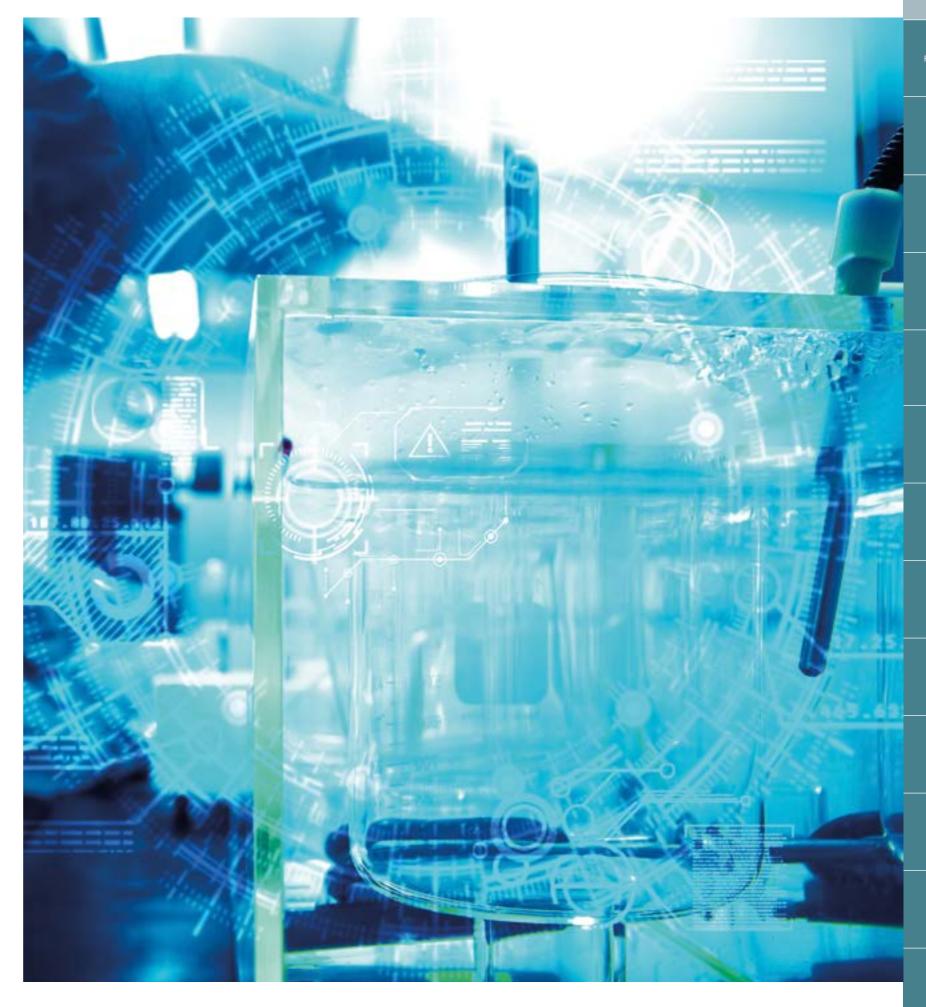
Baffle can be removed easily for cleaning

All spigot can be electrofusion or butt welded All bosses used by drilling out with a 42mm hole

• Saw Bosses are offset from centre for a more compact design

UK Manufactured

Terrain FUZE Technical Manual 2023


The following tables provide a list of inorganic compounds, which may be conveyed through HDPE systems with no internal pressure or mechanical stress, at temperatures up to 60°C and those fluids which are unsuitable.

The information within this section has been collated from tests carried out by both national and international standards organisations (ISO/TR10358:2021).

TERMINOLOGY	FOR CHEMICAL RESISTANCE TABLES
SYMBOL/TERM	DESCRIPTION
	No data
S	Satisfactory
L	Limited
NS	Not satisfactory
Dil. sol.	Dilute aqueous solution at a concentration equal to or less than 10%
Sol.	Aqueous solution at a concentration higher than 10%, but not saturated
Sat. sol.	Saturated aqueous solution, prepared at 20°C
tg-l	Technical grade, liquid
tg-g	Technical grade, gas
Work. sol.	Working solution of the concentration usually used in the industry concerned
Susp.	Suspension of solid in a saturated solution at 20°C

The tests were based on the use of pure chemicals.

For mixed chemicals, we would advise that pilot tests should be undertaken in order to ascertain the resistance of the material under these circumstances.

Tableoffluids*whichcanbeconveyedthroughHDPEpipeandfittingswithnointernal pressure, mechanical stress and temperature up to 60°.

CHEMICAL	CONCENTRATION	TE	MPERATUR	E℃
		20	40	60
	40	S	L	L
Acetaldehyde	tg-l	S		
	tg-g		L	L
Acetarnide	5	S	S	S
	Up to 10	S	S	S
	10 to 40	S	S	S
Acetic acid	50	S	S	L
Acetic acid	60	S	L	L
	80	L	L	L
	95	L	L	L
Acetic acid, glacial	>96	S	L	L
Acetic anhydride	tg-l	S	L	L
	Up to 10	S	S	L
Acetone	tg-l	L	L	
	tg-g			L
Acetophenone	tg-l	S	L	L
A	tg-l	L	NS	
Acetyl chloride	tg-g			
Acetylene, gas	tg-g	S	S	S
Acrylonitrile	tg-l	S	S	L
Adipic acid	Sat. sol. (1,4%)	S	S	S
Air	tg-g	S	S	S
Allyl alcohol	tg-l	S	S	L
Allyl chloride	Sat. sol.	L	NS	NS
Almond oil	tg-l	S	L	L
Alum (see Aluminium potassium sulphate)				
Aluminium chloride	Sat. sol.	S	S	S
Aluminium fluoride	Susp.	S	S	S
Aluminium hydroxide	Susp.	S	S	S
Aluminium nitrate	Sat. sol.	S	S	S
Aluminium chloride oxyde	Susp.	S	S	S
		_		

^{*}Plastic pipe and fittings combined chemical resistance classification table ISO/TR10358:2021

CHEMICAL	CONCENTRATION	TEM	MPERATUR	E℃
	%	20	40	60
Aluminium potassium sulphate	Sat.sol.	S	S	S
Aluminium sulphate	Sat. sol.	S	S	S
Ammonia, aqueous	Sat. sol.	S	S	S
Ammonia, dry gas	tg-g	S	S	S
Ammonia, wet gas	tg-g	S	S	S
Ammonium acetate	Sat. sol.	S	S	S
Ammonium bifluoride	Sat. sol.	S	S	S
Ammonium carbonate	Sat. sol.	S	S	S
Ammonium chloride	Sat. sol.	S	S	S
	Up to 20	S	S	S
Ammonium fluoride	25	S	S	S
	Sat.sol.	S	S	S
Ammonium hydrogen carbonate	Sat. sol.	S	S	S
Ammoniummetaphosphate	Sat. sol.	S	S	S
Ammonium molybdate	Sat. sol.	S	S	S
Ammonium nitrate	Sat. sol.	S	S	S
Ammonium persulphate	Sat. sol.	S	S	S
Ammonium phosphate	Sat. sol.	S	S	S
Ammonium sulphate	Sat. sol.	S	S	S
Ammonium sulphide	Sat. sol.	S	S	S
Ammonium thiocyanate	Sat sol.	S	S	S
Amyl acetate	tg-l	S	S	L
Amyl alcohol	tg-l	S	S	L
Amyl chloride	tg-l	NS	NS	NS
A :11:	Sat. sol.	S	S	L
Aniline	tg-l	S	L	L
Aniline hydrochloride	Sat.sol.	L	L	L
Anisole	tg-l	L	L	NS
Anthraquinone sulphonic acid	Susp.	S	S	S
Antimony (111) chloride	Sat.sol.	S	S	S
Apple juice	Work.sol.	S	S	S
Aqua regia	HCI:HN03 = 3:1	NS	NS	NS

Tableoffluids*whichcanbeconveyedthrough HDPEpipeandfittingswithnointernal pressure, mechanical stress and temperature up to 60°.

CHEMICAL	CONCENTRATION	TEM	1PERATUR	RE °C
		20	40	60
Arsenic acid	Sat.sol.	S	S	S
Arsenic trioxide	Sol.	L	L	L
Barium bromide	Sat. sol.	S	S	S
Barium carbonate	Susp.	S	S	S
Barium chloride	Sat. sol.	S	S	S
Barium hydroxide	Sat. sol.	S	S	S
Barium sulphate	Susp.	S	S	S
Barium sulphide	Sat. sol.	S	S	S
Beer	Work. sol.	S	S	S
	0,1	S	S	L
Benzaldehyde	tg-l	S	L	L
Benzene	tg-l	L	L	L
Benzoic acid	Sat.sol.	S	S	S
Benzoyl chloride	tg-l	L	L	L
Benzyl alcohol	tg-l	S	S	L
Benzyl chloride	tg-l	L	NS	NS
Bismuth carbonate	Sat.sol.	S	S	S
Borax	Sol.	S	S	S
	Oil. sol.	S	S	S
Boric acid	Sat. sol.	S	S	S
Boron trifluoride	Sat. sol.	S	S	S
Bromic acid	10	S	S	S
(dee. at 100°C)	50	NS	NS	NS
Bromine, gas	tg-g			NS
Bromine, liquid	tg-l	NS	NS	
Bromine water	Sat. sol.	L	L	NS
_	tg-l	NS	NS	
Bromoethane	tg-g			NS
Butadiene, gas	tg-g	L	NS	NS
Butane, gas	tg-g	S	S	S
	10	S	S	L
Butanediol	tg-l	L	L	L
n-Butanol	tg-l	S	S	S
Butyl acetate	tg-l	L	L	L

CHEMICAL	CONCENTRATION	TEM	IPERATUF	RE °C
		20	40	60
Butyl glycol	tg-l	S	L	L
Butylphenol	Sat. sol.	S	S	S
Butyl phthalate	tg-l	S	L	L
Doub min a sid	20	S	S	L
Butyric acid	tg-l	S	S	L
Butyryl chloride	tg-l	L	L	
Calcium bisulphite	Sat. sal.	S	S	S
Calcium bromide	Sat. sal.	S	S	S
Calcium carbonate	Susp.	S	S	S
Calcium chlorate	Sat. sol.	L	L	L
Calcium chloride	Sat. sol.	S	S	S
Calcium hydroxide	Sat.sol.	S	S	S
Calcium hypochlorite	10	L	L	L
Calcium nitrate	Sat. sol.	S	S	S
Calcium sulphate	Susp.	S	S	S
Calcium sulphide	Dil. sol.	L	L	L
Calciumhydrogensulphide	Sol.	S	S	S
Camphor oil	tg-l	NS	NS	NS
Carbondioxideaqueoussol.	Sat.sol.	S	S	S
Carbon dioxide, dry gas	tg-g	S	S	S
Carbon dioxide, wet gas	tg-g	S	S	S
	tg-l	L	NS	
Carbon disulphide	tg-g			NS
Carbon monoxide, gas	tg-g	S	S	S
Carbon tetrachloride	tg-l	L	NS	NS
Castor oil	tg-l	S	S	S
Chlorine, aqueous (see Chlorine water)				
Chlorine, dry gas	tg-g	L	NS	NS
Chlorine water	Sat.sol.	L	L	L
Chlorine, wet gas	tg-g	L	NS	NS

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

^{*}Plastic pipe and fittings combined chemical resistance classification table ISO/TR10358:2021

Tableoffluids*whichcanbeconveyedthroughHDPEpipeandfittingswithnointernal pressure, mechanical stress and temperature up to 60°.

CHEMICAL	CONCENTRATION %	TEMPERATURE °C		
		20	40	60
	Sol.	S	S	S
Chloroacetic acid	Sat.sol.	S	S	S
	50	S	S	S
Chlorobenzene	tg-l	L	NS	NS
Chlorobromo- methane	tg-l	L	L	L
Chloroethanol	tg-l	S	L	L
Chloroform	tg-l	L	L	NS
Chloromethane, gas	tg-g	L	NS	NS
Chloropropos	tg-l	NS		
Chloropropanes	tg-g			
Chlorosulphonic acid	50	NS	NS	NS
Chrome alum (chromium	Sol.	S	S	S
potassium sulphate)	Sat. sol.	S	S	S
	Sat.sol.	L	L	NS
	10	L	L	L
	20	L	L	L
Chromic acid	25	L	L	L
	30	L	L	L
	40	L	L	L
	50	L	L	L
Citric acid	Sat. sol.	S	S	S
Coconut oil	Work. sol.	S	S	L
Cod liver oil	Work. sol.	S	NS	NS
Copper (II) chloride	Sat. sol.	S	S	S
Copper (II) cyanide	Sat. sol.	S	S	S
	Oil.sol.	S	S	S
Copper (II) fluoride	Sat. sol.	S	S	S
	2	S	S	S
<i>c</i>	Sat. sol.	S	S	L
Copper (II) nitrate	50	S	S	S
Copper (11) sulphate	Sat. sol.	S	S	S
Corn oil	Work sol.	S	L	L

^{*}Plastic pipe and fittings combined chemical resistance classification table ISO/TR10358:2021

CHEMICAL	CONCENTRATION %	TE	TEMPERATURE °C			
		20	40	60		
Cottonseed oil	Work. sol.	S	S	S		
Cresols	tg-l	S	S	L		
Cresylic acid	Sat. sol (approx. 2-3%)	L	NS	NS		
Cresylic acid	50 (tg-l)	L	NS	NS		
Crotonaldehyde	Sat. sol. (18%)	S	L	L		
Crotonaldenyde	tg-l	S	L	L		
Crude oil (free from aromatics)	tg-l	S	L	L		
Cyclohexane	tg-l	S	L	L		
Cyclohexanol	Sat. sol.	S	S	L		
Cyclohexanone	tg-l	S	L	L		
Cyclohexylamine	tg-l	L	NS	NS		
Decalin	tg-l	S	L	L		
	Dil. sol.	S	S	S		
Dextrin	Sol.	S	S	S		
Dextrose (dee. at 200°C)	Sol.	S	S	S		
Diacetone alcohol	tg-l	L	L	L		
Diazonium chloride (benzene diazonium chloride)	Work. sol.	L				
	50	S	S	L		
Dich loroacetic acid	tg-l	L	L	L		
Dichlorobenzene	tg-l	L	NS	NS		
Dichloroethylene	tg-l	NS	NS	NS		
Dichloromethane (see Methylene chloride)						
Diesel fuel	Work. sol.	L	L	L		
Diethanolamine	tg-l	S	L	L		
	tg-l	S	L			
Diethylamine	tg-g			NS		
	tg-l	L				
Diethyl ether	tg-g		NS	NS		
Diethylene glycol	tg-l	S	S	S		
	Dil. sol.	S	S	S		
Diglycolic acid	Sat. sol.	S	L	L		
	18	S	S	S		

Tableoffluids*which can be conveyed through HDPE pipe and fittings with no internal pressure, mechanical stress and temperature up to 60°.

CHEMICAL	CONCENTRATION	TEN	MPERATUR	RE ℃
	%	20	40	60
Diisooctyl phthalate	tg-l	S	L	L
Dimethylamine	30	S	S	L
Dimethylamine, gas	tg-g	S	S	L
Dimethyl- formamide	tg-l	S	S	L
Dioctyl phthalate	tg-l	S	L	L
Dioxane	tg-l	S	S	S
Diphenylamine	Work. sol.	S	L	L
	40	S	L	L
Ethanol	95	S	S	S
	tg-l	S	S	S
Ethanolamine	tg-l	S	L	
Ethyl acetate	tg-l	S	L	NS
Ethyl acrylate	tg-l	L	L	NS
Ethyl chloride, gas	tg-g	L	NS	NS
Ethylene bromide	tg-l	L	NS	NS
Ethylene chlorohydrin	tg-l	L	L	L
4451	tg-l	L	NS	NS
1,1 Ethylene dichloride	tg-g			NS
1,2 Ethylene dichloride	tg-l	L	NS	NS
Ethylene glycol	tg-l	S	S	S
Ed. L. d.	tg-l	L		
Ethyl ether	tg-g		L	L
Ethyl glycol	tg-l	S	L	NS
Ethylene oxide	tg-g	S	S	S
Ferric chloride	Sat. sol.	S	S	S
Ferric nitrate	Sat. sol.	S	S	S
Ferric sulphate	Sat. sol.	S	S	S
Ferrous chloride	Sat. sol.	S	S	S
Ferrous sulphate	Sat. sol.	S	S	S
Fluoboric acid (dee. at 130°C)	Sat.sol.	S	L	L
Fluorine gas, dry	tg-g	NS	NS	NS
Fluorine gas, wet	tg-g	NS	NS	NS

CUENICA	CONCENTRATION	TEM	TEMPERATURE °C			
CHEMICAL		20	40	60		
	Sat.sol.	S	S	L		
	25	S				
Fluosilicic acid	32	S				
	40	S				
	50	S	S	L		
	Oil. sol.	S	L	NS		
Formaldehyde	30 to 40	S	L	L		
	50	S	L	NS		
	10	S	S	L		
Farmeta a stal	40	L	L	L		
Formic acid	50	L	L	L		
	85 to tg-l	L	L	L		
Freon 12	Work.sol.	L	NS	NS		
Freon 22	tg-g	L	L	L		
Fructose	Sol.	S	S	S		
Fruit juice	Work. sol.	S	S	S		
	tg-l	S	S	L		
Furfuryl alcohol	tg-g	S				
Gas, natural, dry	tg-g	S				
Gas, natural, wet	tg-g	S	S	S		
Gasoline (fuel)	Work. sol.	S	S	L		
(free from aromatics)	Sol.	S	S	S		
Ginger ale	Work. sol.	S	S	S		
Glucose (dee. at> 200°C)	Sol.	S	S	S		
Glycerine	tg-l	S	S	S		
	Sol.	L	L	L		
Glycolic acid	30	L				
	65	L	L	L		
Grapefruit juice	Work. sol.	S	S	S		
Heptane	tg-l	S	L	NS		
Hexadecanol	Work. sol.	S	S	S		
Hexane	tg-l	S	L	L		

^{*}Plastic pipe and fittings combined chemical resistance classification table ISO/TR10358:2021

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Tableoffluids*whichcanbeconveyedthroughHDPEpipeandfittingswithnointernal pressure, mechanical stress and temperature up to 60°.

CHEMICAL	CONCENTRATION	TEM	MPERATUR	E℃
CHLIVIICAL	%	20	40	60
1-Hexanol	tg-l	S	S	S
Honey	Work. sol.	S	S	S
Horseradish	Work sol.	S	S	S
	Up to 20	S	S	S
	Up to 50	S	S	S
Hydrobromic acid	66	L	L	NS
	tg-g	L	L	L
	Up to 10	S	S	S
	10 to 20	S	S	S
	Up to 25	S	S	S
Hydrochloric acid	30	S	S	S
	33	S	S	L
	36	S	S	L
	37,5	S	S	L
Hydrochloric acid, dry gas	tg-g	S	L	NS
Hydrochloric acid, wet gas	tg-g	S	L	NS
	Sat.sol.	S	L	NS
I badan was is a sid	10	S	S	S
Hydrocyanic acid	tg-l	S		
	tg-g		L	NS
	Up to 10	S	S	S
	40	S	S	L
Lludwalluavia asid	48	S	L	L
Hydrofluoric acid	50	S	L	L
	60	S	L	L
	70	S	L	L
Hydrofluoric acid, gas	tg-g	NS		
Hydrogen	tg-g	S	S	S
Lludes are a sociale	Up to 10	L	L	L
	30	L	L	L
Hydrogen peroxide	50	L	L	NS
	70	L	L	NS

^{*}Plastic pipe and fittings combined chemical resistance classification table ISO/TR10358:2021

CHEMICAL	CONCENTRATION	TEN	TEMPERATURE ℃		
CHEMICAE	% !	20	40	60	
Hydrogen phosphide (see Phosphine)					
	Dil. sol,	S	S	L	
Hydrogen sulphide, aqueous	Sat. sol.	S	S	L	
aqueous	tg-g	S	S	L	
Hydrogen sulphide, dry gas	tg-g	S	S	L	
Hydroquinone	Sat. sol.	S	L	L	
	Sat. sol.	L	NS	NS	
Hypochlorous acid —	70	L	NS	NS	
lodine (in potassium iodine)	Sat. sol.	NS	NS	NS	
lodine, in alcohol	Work. sol.	NS	NS	NS	
Isobutyl alcohol	tg-l	S	S	L	
Isobutyronitrile	tg-l	L	L	NS	
Isooctane	tg-l	S	L	L	
Isopropyl acetate	tg-l	S	L	L	
Isopropyl alcohol	tg-l	S	S	S	
Isopropyl ether	tg-l	L	L	NS	
Kerosene	Work. sol.	S	L	L	
	10	S	S	S	
	28	S	S	S	
Lactic acid —	90	S	S	S	
	tg-l	S	S	S	
Lanolin	Work. sol.	S	L	L	
Lauryl chloride	Sat. sol.	L	L	NS	
Lead acetate	Dil. sol.	S	S	S	
Lead tetraethyl (dee. at 200°C)	tg-l	S	S		
Linseed oil	Work. sol.	S	S	L	
Magnesium carbonate	Susp.	S	S	S	
	Sat. sol.	S	S	S	
Magnesium chloride —	50	S	S	S	
Magnesium hydroxide	Sat. sol.	S	S	S	
Magnesium nitrate	Sat. sol.	S	S	S	
Magnesium sulphate	Sat. sol.	S	S	S	

Tableoffluids*whichcanbeconveyedthrough HDPE pipe and fittings with no internal pressure, mechanical stress and temperature up to 60°.

CHEMICAL	CONCENTRATION	TEN	IPERATUF	RE ℃
		20	40	60
Maleic acid	Sat. sol.	S	S	S
(dee. at 160°C)	50	S	S	S
Malic acid (subl.)	Sol.	S	S	S
Malic acid (SUDI.)	Sat. sol.	S	S	S
Margarine	Work. sol.	S	S	S
Mayonnaise	Work. sol.	S	S	S
Mercuric chloride	Sat. sol.	S	S	S
Mercuric cyanide	Sat. sol.	S	S	S
	Sol.	S	S	S
Mercurous nitrate –	Sat. sol.	S	S	S
Mercury	tg-l	S	S	S
Mercury (11) chloride (see Mercuric chloride)				
Mercury (11) cyanide (see Mercuric cyanide)				
Mesityl oxide	Work. sol.	NS	NS	NS
Methane	tg-g	S	L	
Made I a satur	tg-l	S	S	
Methyl acetate –	tg-g			
Made dalaskal	5	S	S	S
Methyl alcohol –	tg-l	S	S	S
Methyl bromide (bromo methane]	tg-g	L	NS	NS
Methyl butyl ketone	tg-l	L	L	NS
Methyl cyclohexanones	tg-l	L	L	
Methyl ethyl ketone	tg-l	S	L	L
Methyl glycol	Work. sol.	S	L	L
Methyl methacrylate	tg-l	S	S	S
Methyl sulphate	Work. sol.	L	L	
Methyl sulphonic acid (dee.)	tg-l	L	L	NS
Methylamine	Up to 32	S	L	L
Mathylana shlarida	tg-l	L	L	
Methylene chloride =	tg-g			
Milk	Work. sol.	S	S	S
Mineral oils (free from aromatics)	Work. sol.	S	L	NS

CHEMICAL	CONCENTRATION %	TEN	RE ℃	
		20	40	60
Molasses	Work. sol.	S	L	L
Mustard, aqueous	Work. sol.	S	S	S
Naphtha	Work. sol.	S	L	NS
Naphthalene	Work. sol.	S	L	L
Nickel acetate	Sat. sol.	S	S	S
Nickel chloride	Sat. sol.	S	S	S
Nickel nitrate	Sat. sol.	S	S	S
Nickel sulphate	Sat. sol.	S	S	S
Nicotin acid	Susp.	S	S	S
	5	L	L	L
	10	L	L	L
	20	L	L	NS
	25	L	L	NS
	30	L	NS	NS
Nitric acid	35	L	NS	NS
	40	NS	NS	NS
	45	NS	NS	NS
	50	NS	NS	NS
	60	NS	NS	NS
	85	NS	NS	NS
Nitric acid, fuming (with nitrogen dioxide)		NS	NS	NS
Nitrobenzene	tg-l	S	L	L
Nitro methane	tg-l	S	L	L
Oleic acid	tg-l	S	L	L
Oleum		NS	NS	NS
Olive oil	Work.sol.	S	S	L
Orthophosphoric acid (see Phosphoric acid)				
	Dil. sol.	S	S	S
Oxalic acid (subl.)	Sat. sol.	S	S	S
	50	S	S	S
Oxygen, gas	tg-g	S	L	L
	Sat. sol.	L	NS	NS
Ozone, gas	tg-g	L	NS	NS

^{*}Plastic pipe and fittings combined chemical resistance classification table ISO/TR10358:2021

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Tableoffluids*whichcanbeconveyedthroughHDPEpipeandfittingswithnointernal pressure, mechanical stress and temperature up to 60°.

CUEANCAL	CONCENTRATION	TEMPERATURE °C		
CHEMICAL		20	40	60
Paraffin	tg-l	S	S	L
Paraffin oil (F65)	tg-l	S	L	L
Peanut oil	Work. sol.	S	S	L
Pentane	Work. sol.	S	S	L
Peppermint oil	Work. sol.	S		
Perchloro- ethylene	Work. sol.	L	L	NS
	10	L	L	L
Perchloric acid	(ZN)20	L	L	NS
	70	L	NS	NS
Petrol (aliphatic hydrocarbon/benzene)	80/20	S	L	L
Petroleum ether (ligroin)	Work sol.	S	L	L
	Sol.	S	S	L
	5	S	S	S
Phenol	50	S	S	
	90	S	S	L
	tg-l			
Phenyl hydrazine (dee.)	tg-l	L	L	NS
Phenylhydrazine	Oil. sol.	S	L	NS
hydrochloride (subl.)	97	S	L	NS
Phosphine	tg-g	L	L	L
	Up to 50	S	S	S
Dhoenharic acid	50 to 75	S	S	S
Phosphoric acid	75 to 85	S	S	L
	98	S	S	L
Phosphorus (III) chloride	tg-l	S	S	L
Phosphorus oxychloride	tg-l	S	S	L
Phthalic acid	Susp.	S	S	S
Dieric acid (subl.)	Sat. sol.	S	S	L
Picric acid (subl.)	10	S		
Potassium aluminium sulphate (see Aluminium potassium sulphate)				
Potassium bicarbonate	Sat. sol.	S	S	S
Potassium bichromate (seePotassiumdichromate)				

CHEMICAL	CONCENTRATION	TEA	MPERATUR	E℃
		20	40	60
Potassium bisulphate	Sat. sol.	S	S	S
Potassium borate	Sat. sol.	S	S	S
Data arisma kananata	Sat. sol.	S	S	S
Potassium bromate	Up to 10		S	S
Potassium bromide	Sat. sol.	S	S	S
Potassium carbonate	Sat. sol.	S	S	S
Potassium chlorate	Sat. sol.	S	S	L
Potassium chloride	Sat. sol.	S	S	S
Potassium chlorite	Sat.sol.	S	S	S
D	Sat. sol.	S	S	L
Potassium chromate	40	S	S	L
Potassium cuprocyanide	Sat. sol.	S	S	S
Potassium cyanide	Sol.	S	S	S
	Sat. sol.	S	S	L
Potassium dichromate	40	S	S	S
Potassium ferricyanide	Sat.sol.	S	S	S
Potassium fluoride	Sat. sol.	S	S	S
Potassium hexacyanoferrate (11) (potassium ferrocyanide)	Sat. sol.	S	S	S
Potassium hexacyanoferrate (111) (see Potassium ferricyanide)				
Potassium hydrogen carbonate (see Potassium bicarbonate)				
Potassium hydrogen sulphate (see Potassium bisulphate)				
Potassium hydrogen	Sol.	S	S	S
sulphite	Sat.sol.	S	S	S
	up to 10	S	S	S
Potassium hydroxide	20	S	S	S
	Up to 50	S	S	S
Potassium hypochlorite	Sol.	L	L	NS
Potassium iodide	Sat. sol.	S	S	S
	Sat. sol.	S	S	S
Potassium nitrate	50	S	S	S

Sat. sol.

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Potassiumorthophosphate

Tableoffluids*whichcanbeconveyedthroughHDPEpipeandfittingswithnointernal pressure, mechanical stress and temperature up to 60°.

CHEMICAL	CONCENTRATION %	TEMPERATURE °		RE ℃
		20	40	60
Potassium perborate	Sat. sol.	S	S	S
	Sat. sol.	L	L	L
Potassium perchlorate —	10	S	S	L
	Sat. sol.	L	L	NS
	10	S	L	L
Potassium permanganate—	20	L	L	L
	25	L	L	
Potassium persulphate	Sat. sol.	S	S	S
Potassium sulphate	Sat. sol.	S	S	S
Potassium sulphide	Sat.sol.	S	S	S
Potassium sulphite	Sat. sol.	S	S	S
Potassium, thiosulphate	Sat. sol.	S	S	S
Propane, gas	tg-g	S	S	L
	50	S	S	S
Propionic acid —	tg-l	S	L	L
Propyl alcohol	tg-l	S	S	S
Pyridine	tg-l	S	L	L
Salicylic acid (subl.)	Sat. sol.	S	S	S
Selenic acid	Sat. sol.	S	S	S
Silicic acid	Susp.	S	S	S
Silicone oil	tg-l	S	S	S
Silver acetate	Sat. sol.	S	S	S
Silver cyanide	Sat. sol.	S	S	S
en .	Sat. sol.	S	S	S
Silver nitrate —	50	S	S	S
Sodium acetate	Sat. sol.	S	S	S
Sodium acid sulphate (see Sodium				
bisulphate)	Sat sol.	S	S	S
Sodium antimonite	Sat. sol.	S	S	S
	Sat. sol.	S	S	S
Sodium arsenite	35	S	S	S
	50	S	S	S

*Plastic pipe and fittings	combined	chemical	resistance	classification
table ISO/TR10358:2021				

CHEMICAL	CONCENTRATION %	TEMPERATUR		RE ℃		
	,,,	20	40	60		
Sodium bicarbonate	Sat. sol.	S	S	S		
Sodium bisulphate	Sat. sol.	S	S	S		
Journal Disciplinate	50	S	S	S		
Sodium bromide	Sat. sol.	S	S	S		
Journal Bronniae	50	S	S	S		
	Sat. sol.	S	S	S		
Sodium carbonate	25	S	S	S		
	Up to 50	S	S	S		
Sodium chlorate	Sat. sol.	S	L	L		
	Sat.sol.	S	S	S		
Sodium chloride	10	S	S	S		
	2	S	L	NS		
Sodium chlorite	20	S	L	NS		
Sodium chromate	Dil. sol.	S	S	S		
Sodium cyanide	Sat. sol.	S	S	S		
Sodium dichromate	Sat. sol.	S	L	L		
Sodium ferricyanide	Sat. sol.	S	S	S		
Sodium ferrocyanide	Sat. sol.	S	S	S		
Sodium fluoride	Sat. sol.	S	S	S		
Sodium hexacyanoferrate						
(II) (see Sodium ferrocyanide)						
Sodium hexacyanoferrate						
(III) (see Sodium ferricyanide)						
Sodium hydrogen carbonate (see Sodium bicarbonate)						
Sodiumhydrogensulphate (see bisulphate)						
Sodiumhydrogensulphite	Sat. sol.	S	S	S		
	Dil. Sol.	S	S	S		
	Sat sol.	S	S	S		
Sodium hydroxide	1	S	S	S		
	5	S	S	S		
	10 to 60	S	S	S		
Sodium hypochlorite	2%Cl (percentage of free chlorine)	L	L			

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Terrain FUZE Technical Manual 2023 Terrain FUZE Technical Manual 2023

S S S

^{*}Plastic pipe and fittings combined chemical resistance classification table ISO/TR10358:2021

Table of fluids * which can be conveyed through HDPE pipe and fittings with no internal through the conveyed thrpressure, mechanical stress and temperature up to 60°.

CHEMICAL	CONCENTRATION TI		MPERATUR	E℃
		20	40	60
Sodium hypochlorite (cont'd)	12,5 % CI (percentage of free chlorine)	L	L	
Sodium metaphosphate	Sol.	S	S	S
Sodium nitrate	Sat. sol.	S	L	L
Sodium nitrite	Sat. sol.	S	S	S
Sodium orthophosphate (see Sodium phosphate, neutral)				
Sodium perborate	Sat. sol.	S	S	S
Sodium phosphate, acid	Sat. sol.	S	S	S
Sodium phosphate, neutral	Sat. sol.	S	S	S
Cadium cilianta	Sol.	S	S	S
Sodium silicate	Sat. sol.	S	S	S
Continue and about	Sat. sol.	S	S	S
Sodium sulphate	0,1	S	S	S
Sodium sulphide	Sat. sol.	S	S	S
6 1: 11:	Sat. sol.	S	S	S
Sodium sulphite	40	S	S	S
Sodium thiosulphate	Sat. sol.	S	S	S
(hyposulphite)	50	S	S	S
Soybean oil	Work. sol.	S	L	L
Stearic acid	Work. sol.	S	L	L
Stearin	Work. sol.	S	L	L
Styrene	Sat. sol.	L	NS	NS
Sugar, aqueous sol.	Sol.	S	S	S
Sulphur dioxide, dry gas	Work. sol.	S	S	S
Sulphur dioxide, wet gas	Work.sol.	S	S	L
Sulphur ether (thioether)	Work.sol.	L	L	NS
	10	S	S	S
	15	S	S	S
	30	S	S	S
Sulphuric acid	50	S	S	S
	70	S	S	L
	80	L	L	NS
	90	L	L	NS

CHEMICAL	CONCENTRATION	TEN	MPERATURI	E℃
		20	40	60
	95	NS	NS	NS
	96	NS	NS	NS
Sulphuric acid (cont'd)	98	NS	NS	NS
	Fuming	NS	NS	NS
Coloborno	Sat.sol.	S	S	L
Sulphurous acid -	Up to 30	S	S	L
Tannie acid -	Sol.	S	L	L
Tarrille acid	Sat.sol.	S	L	L
Tartaric acid (dee.)	Sol.	S	S	S
rartaric acid (dee.)	Sat.sol.	S	S	S
Tetrahydrofuran	tg-l	L	NS	NS
Tetralin	tg-l	S	L	NS
Thionyl chloride	tg-l	NS	NS	NS
Thiophene	tg-l	L	L	L
Tin (II) chloride	Sat. sol.	S	S	S
Tin (IV) chloride	Sol.	S	S	S
Toluene	tg-l	L	NS	NS
Tributyl- phosphate	Sat. sol.	S	S	S
Trichloroacetic acid	Up to SO	S		S
Trichloro- benzene	Work. sol.	NS	NS	NS
Trichloro- ethylene	tg-l	NS	NS	NS
	Sol.	S	S	L
Triethanolamine -	tg-l	S	S	L
Triethylene glycol	Sol.	S	S	S
Trimethylol- propane	Up to 10	S	S	S
Trisodium phosphate (see Sodium phosphate, neutral)				
Turpentine	tg-I	L	L	NS
	Sol.	S	S	S
Urea	Sat. sol.	S	S	S
	10	S	S	S
Uric acid (dec.at> 400°C)	Work. sol.	S	S	S
Urine	Work. sol.	S	S	S

*Plastic pipe and fittings combined chemical resistance classification table ISO/TR10358:2021

Table of fluids * which can be conveyed through HDPE pipe and fittings with no internal through the conveyed thrpressure, mechanical stress and temperature up to 60°.

CHEMICAL	CONCENTRATION %		E°C	
		20	40	60
Sodium hypochlorite (cont'd)	12,5 % CI (percentage of free chlorine)	L	L	
Sodium metaphosphate	Sol.	S	S	S
Sodium nitrate	Sat. sol.	S	L	L
Sodium nitrite	Sat. sol.	S	S	S
Sodium orthophosphate (see Sodium phosphate, neutral)				
Sodium perborate	Sat. sol.	S	S	S
Sodium phosphate, acid	Sat. sol.	S	S	S
Sodiumphosphate,neutral	Sat. sol.	S	S	S
Cardinan ellinet	Sol.	S	S	S
Sodium silicate -	Sat. sol.	S	S	S
	Sat. sol.	S	S	S
Sodium sulphate -	0,1	S	S	S
Sodium sulphide	Sat. sol.	S	S	S
Sodium sulphite -	Sat. sol.	S	S	S
	40	S	S	S
Sodium thiosulphate	Sat. sol.	S	S	S
(hyposulphite)	50	S	S	S
Soybean oil	Work. sol.	S	L	L
Stearic acid	Work. sol.	S	L	L
Stearin	Work. sol.	S	L	L
Styrene	Sat. sol.	L	NS	NS
Sugar, aqueous sol.	Sol.	S	S	S
Sulphur dioxide, dry gas	Work. sol.	S	S	S
Sulphur dioxide, wet gas	Work.sol.	S	S	L
Sulphur ether (thioether)	Work.sol.	L	L	NS
	10	S	S	S
	15	S	S	S
	30	S	S	S
Sulphuric acid	50	S	S	S
	70	S	S	L
	80	L	L	NS
	90	L	L	NS

CHEMICAL	CONCENTRATION	TEM	TEMPERATURE ℃			
CHEWICAL	%	20	40	60		
	95	NS	NS	NS		
	96	NS	NS	NS		
Sulphuric acid (cont'd)	98	NS	NS	NS		
	Fuming	NS	NS	NS		
	Sat.sol.	S	S	L		
Sulphurous acid	Up to 30	S	S	L		
Tannie acid	Sol.	S	L	L		
rannie acid	Sat.sol.	S	L	L		
Tartaric acid (doo)	Sol.	S	S	S		
Tartaric acid (dee.)	Sat.sol.	S	S	S		
Tetrahydrofuran	tg-l	L	NS	NS		
Tetralin	tg-l	S	L	NS		
Thionyl chloride	tg-l	NS	NS	NS		
Thiophene	tg-l	L	L	L		
Tin (II) chloride	Sat. sol.	S	S	S		
Tin (IV) chloride	Sol.	S	S	S		
Toluene	tg-l	L	NS	NS		
Tributyl- phosphate	Sat. sol.	S	S	S		
Trichloroacetic acid	Up to SO	S		S		
Trichloro- benzene	Work. sol.	NS	NS	NS		
Trichloro- ethylene	tg-l	NS	NS	NS		
	Sol.	S	S	L		
Triethanolamine	tg-l	S	S	L		
Triethylene glycol	Sol.	S	S	S		
Trimethylol- propane	Up to 10	S	S	S		
Trisodium phosphate (see Sodium phosphate, neutral)						
Turpentine	tg-l	L	L	NS		
	Sol.	S	S	S		
Urea	Sat. sol.	S	S	S		
	10	S	S	S		
Uric acid (dec.at> 400°C)	Work. sol.	S	S	S		
Urine	Work. sol.	S	S	S		

^{*}Plastic pipe and fittings combined chemical resistance classification table ISO/TR10358:2021

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

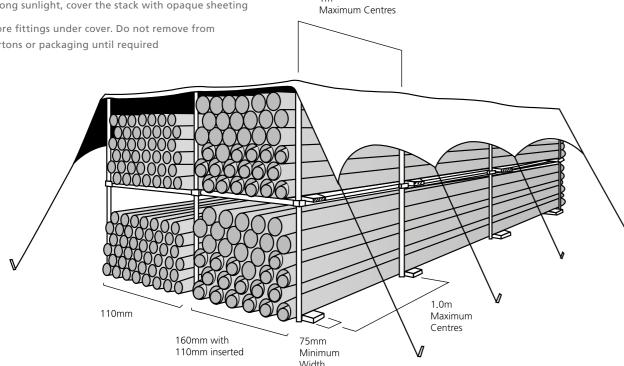
6 Storage & Handling

Good Site Practice

GOOD SITE PRACTICE

- Pipes should not be thrown, dropped or dragged along hard surfaces
- In case of mechanical handling, use protective slings and padded supports. Metal chains and hooks should not make contact with the pipe

ON-SITE STORAGE


- Stack pipe lengths
 - on a flat base
 - on level ground
 - or on 75mm x 75mm timber at 1m centers (Fig. 1)
- Provide side support with 75mm wide battens at 1m centres (Fig. 1)
- Maximum stack should not exceed 1.5m high
- Ideally, stacks should contain one diameter pipe size only. Where this is not possible, stack largest diameter pipes at base of stack. Small pipes may be nested inside larger pipes
- If stored in the open for long periods or exposed to strong sunlight, cover the stack with opaque sheeting
- Store fittings under cover. Do not remove from cartons or packaging until required

STORAGE IN HOT CLIMATES

- Ultra-violet light can affect pipes and fittings: pipe colour may change and rubber seals may be degraded
- Store accordingly:
 - store all materials in well-ventilated, shady conditions
 - do NOT expose to direct sunlight
 - keep fittings in original packaging until required for use
- Maximum stack (hot conditions): six layers high

SITE SAFETY

MSDS data sheets are available on request

ELECTROFUSION WELDING

1. Cut the pipe or fitting using the appropriate pipe cutter or saw. Make sure the end of the pipe or fitting is square and clean.

- 2. Scrape the oxidation layer from the spigot of the pipe or fitting to at least the insertion depth of the coupling using the appropriate pipe scraper. Ensure that the spigot ends and the couplers are kept clean and free from dirt, water and grease.
- 3. Insert into the centre stop of the coupling. Mark the spigots using a wax pencil.
- 4. Unpack your Polypipe Terrain FUZE electrofusion welding machine and ensure you have the correct leads attached.
- 5. Ensuring that the pipe work is supported correctly, attach the leads to the coupling and push the start/ stop button. This will begin the electrofusion welding process.
- 6. There will be two visual indications showing that the weld has been completed successfully. The first will be on the screen showing that the welding is 100% complete. The second will be a visual indication on the coupling, as shown below.

Electrofusion Welding

TENSION-RESISTANT

Terrain FUZE offers workable and effective solutions to a wide range of project

constraints through the availability of a number of jointing methods. Each connection

is categorised according to its varying properties, with the different classifications

Connections which cannot be disconnected by tensional forces.

NON-TENSION-RESISTANT

Connections which can be disconnected by tensional forces.

assembled as follows:

REMOVABLE

NON-REMOVABLE

Screw-threaded coupling

7 Jointing Methods

Connections which can be disconnected after assembly.

Connections which cannot be disconnected after assembly.

Expansion socket Electrofusion coupling

Ring-seal socket

Rigid fixing

Jointing Methods

Electrofusion Welding

The before and after.

Before

After

Examples of electrofusion welded joints which have been made correctly and incorrectly:

EXAMPLE OF A GOOD ELECTROFUSION WELD JOINT

You can see that the pipe surface has been scraped and the fitting has been welded once. The pipe and coupling surfaces have welded together to make a good joint.

EXAMPLES OF INCORRECTLY PREPARED ELECTROFUSION WELD JOINTS

This shows where the coupling was welded twice without the coupling being left to cool down after the first weld. This has resulted in the pipe becoming distorted due to the excess heat.

In the joint to the right the pipe has not been cut square and you can also see that the pipe surface has not been scraped. This joint is likely to leak.

Butt Welding

- Prepare pipe ends and insert into butt welding machine.
- 2. Use the planing tool to ensure that the pipe ends are square and free of any burr's.
- Press the pipe/fitting ends lightly against the hot plate melting the pipe ends until a small bead is visible around both ends.
- 4. Remove hot plate and press the ends together with the necessary pressure (as advised by welding machine) and lock the clamps in place until the weld begins to cool.

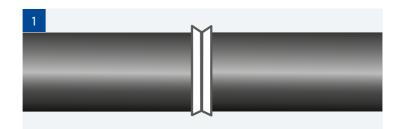
ELECTROFUSION WELDING

ELECTROFUSION WELDING BUTT WELDING

> BUTT VELDING ING SEAL

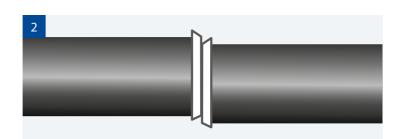
FLANGED & MECHANICA JOINTS

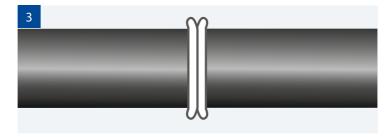
BUTT WELDING

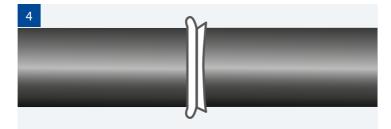

7 Jointing Methods

Butt Welding

Examples of butt welded joints which have been made correctly and incorrectly. These can be easily identified with a visual inspection:


EXAMPLE OF A GOOD BUTT WELD JOINT


1. Two equal size beads continuing all the way around the pipe on both sides of the joint.



EXAMPLES OF INCORRECT BUTT WELD JOINTS

- 2. The pipes have been misaligned during the welding process.
- 3. Too much pressure has been exerted during the welding process when the pipe ends are on the hot plate. No pressure should be applied at this stage.
- 4. The two pipe ends have not heated evenly on the hotplate. Possibly one of the pipe ends was not cut/planed square.

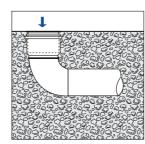
Ring Seal

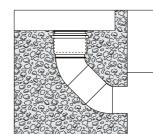
Available in sizes 40 - 315mm

CONNECTION PROPERTIES:

- a) Removable
- a) Non-tension-resistant

Ring-seal sockets facilitate the assembly of pre-fabricated sections.




The pipe should be chamfered to approximately 15° and lubricated with suitable Polypipe product. Do not use oil or grease which can damage the rubber seal.

Assembly

The ring-seal socket is suitable for use on both horizontal and vertical applications with the small dimensions providing a space-saving advantage. Assembly instructions are also available for ring-seal sockets, with the insertion depth corresponding for the same diameters. Ring seal sockets are also provided with a cap to prevent dirt entering the pipe on-site. The pipe must be fully inserted into the socket as it is not intended to act as an expansion socket.

A flush fit is obtained by chamfering the pipe end to approximately 15° and lubricating it with silicone oil. To avoid damage to the rubber seal, do not use oil or grease.

Protection Cap

remains water tight even under substantial hydraulic load. To ensure easy assembly of the sleeve, the following conditions must be observed:

Expansion sockets must be provided on horizontal runs

and vertical stacks running from floor to floor and for

rainwater pipes both inside and outside the building.

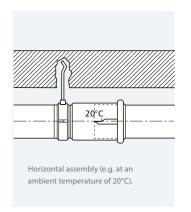
Expansion sockets are suitable for use in both vertical and horizontal applications with the depth of the sleeve

enabling the assembly of stacks and collector pipelines.

The design of the seal allows for pipe movement during expansion and contraction, ensuring that the connection

- Chamfer the inserted pipe end to approximately 15°.
- Lubricate the pipe end with a suitable Terrain product. Note: do not use oil or grease which can compromise
- Observe the indications on the outer surface of the expansion socket for insertion depth.

Expansion


CONNECTION PROPERTIES:

a) Non-tension-resistant

a) Removable

Installation

Available in sizes 40 - 315mm

Jointing Methods

Flanged Joints

Available in sizes 50 – 315mm

CONNECTION PROPERTIES:

- a) Removable
- a) Tension-resistant

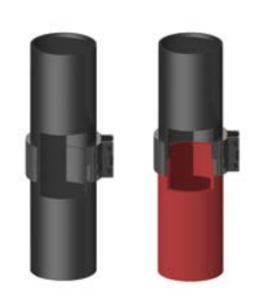
Us

The backing flanges are made of a special, painted aluminium alloy and have standard dimensions to suit EN1092-1/04 PN10/16 manufacturing standard/PN rating. These are most commonly used to create a removable connection in industrial plants. By using a blank flange, it is possible to create an inspection access opening for large diameter pipes (200, 250 and 315mm).

Mechanical

Available in sizes 90 – 160mm

CONNECTION PROPERTIES:


- a) Removable
- a) Non-tension-resistant

Us

Mechanical couplings are used in retrofit and live stack scenarios. They can be used when removing or replacing products in wet sections.

Available in two types:

- For connecting HDPE to HDPE stacks
- For connecting HDPE to existing Cast Iron stacks

Rigid Fixing

Available in size 110mm

CONNECTION PROPERTIES:

- a) Removable
- a) Tension-resistant


Use

Allows for the provision of thermal expansion of HDPE whilst retaining a rigid fixing.

Available in two types:

- For connecting HDPE to HDPE
- For adapting PVC to HDPE

Patented design, patent no. 1703849.8

8 Adapting to other materials

Adapting from one material to another can sometimes require a number of different fittings. Terrain FUZE offers a widerange of solutions that can adapt our system with other materials, with specific products for adapting in direction of flow.

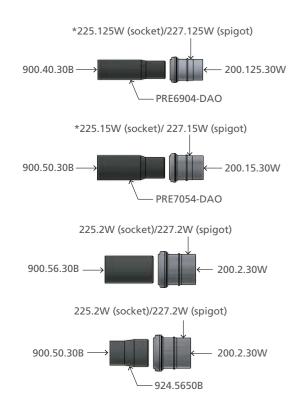
OD								
MATERIAL								
PVC-c	36mm	43mm	56mm	82mm	110mm	160mm		
PP	35mm	41mm	54mm					
HDPE	40mm	50mm	56mm	90mm	110mm	160mm		
Terrain Q	40mm		50mm		110mm	160mm		
Iron	42mm	47.8mm	60mm					
Copper	35mm	42mm	54mm		108mm			
Clay					100mm			
Vulcathene		48mm	60mm	89mm	114mm			
Cast Iron					112mm			
Ridgidrain					118mm	176mm		
Chrome	32mm							

ID							
PVC-c	32mm	39mm	52mm	76mm	104mm	154mm	
PP	31mm	37mm	50mm				
HDPE	34mm	44mm	46mm	83mm	101mm	148mm	
Terrain Q	36mm		50mm		104mm	153mm	
Iron	32mm	38mm	51mm				
Copper	32mm	39mm	54mm		104mm		
Clay					76mm		
Vulcathene		38mm	51mm	76mm	102mm		
Cast Iron					98mm		
Ridgidrain					100mm	150mm	
Chrome	28mm						

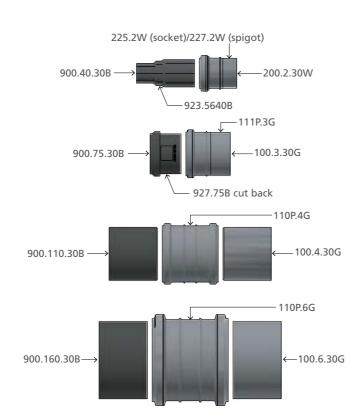

Note: Pipes to be chamfered and lubricated when being used with ring seal, use 9136250L Silicone grease.

References: 1. Terrain Soil and Waste Product Installation guide. 2. BSEN12056 Gravity drainage systems inside buildings. Sanitary pipework, layout and calculation. For more information please call our Technical Team on 01622 795200

The table below shows a range of five adaptors available and you can use this table to find the adaptor to suit your requirements.

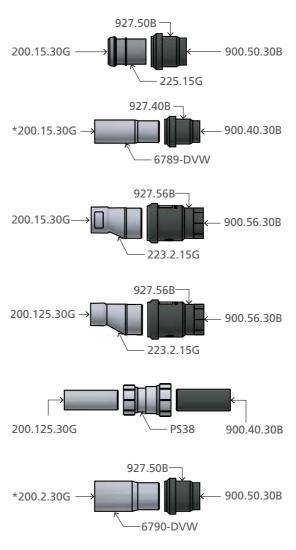

COMPATIBILITY TABLE							
Clay	40mm	32mm	32mm	32mm	32mm		
Vulcathene	50mm	32mm	32mm	32mm	32mm		
Cast Iron	50mm	32mm	32mm	32mm	32mm		
Ridgidrain	56mm	32mm	32mm	32mm	32mm		
Chrome	56mm	32mm	32mm	32mm	32mm		

Terrain Q – Terrain FUZE (HDPE)



8 Adapting to other materials

FUZE (HDPE) – PVC-c



Chrome - FUZE (HDPE)

PVC-c - FUZE (HDPE)

*Note: This will cause a reduction in bore in the direction of flow.

9 Installation

HDPE Thermal Expansion

Terrain FUZE HDPE pipe work systems expand and contract with changes in temperature, both ambient temperature and from the temperature of the waste discharge through the pipework. This guide describes the principles of thermal movement allowance and provides advice covering assembly and jointing techniques.

The advice and guidance is based on typical situations only. For further information contact the Terrain Technical Services

Department. Terrain FUZE HDPE offers substantial durability against the flow of hot water. A waste pipe with no mechanical load will tolerate temperatures of up to 80°C and up to 95°C is permissible for a maximum of two minutes.

Thermal movement MUST always be accounted for in both locked and expansion systems (explained in the following pages).

CALCULATING THERMAL MOVEMENT

Terrain FUZE HDPE has a coefficient of expansion of 0.2 (mm/m/°C), the design and installation of above ground drainage systems must be able to accommodate for this. Calculate the thermal movement on straight lengths between anchors using:

$$\Delta L = L\Delta T$$

Where

 ΔL = expansion (mm) OR contraction (-mm)

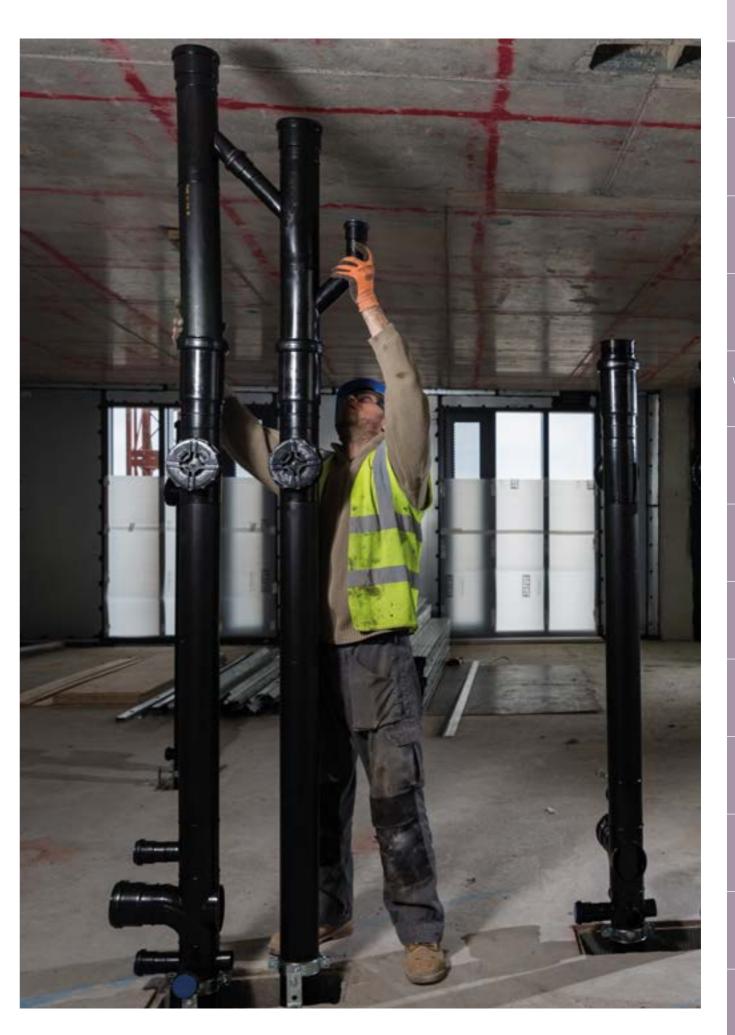
- = co-efficient of linear expansion (mm/m/°C) Terrain FUZE HDPE, 0.2
- L = Total length of the pipe between anchor
- ΔT = Temperature difference (°C)

NB. For waste discharges ΔT should always be calculated from 0°C, so if the temperature of the water in the pipe is to be 60°C, then ΔT is 60°C.

Example 1 - Typical vertical stack

Example 1 - Typical vertical stack A 10 storey foul drainage stack will collect and convey domestic waste (assumed temperature 60°C) and connect directly to drain. Each storey is 3m high.

$$\Delta L = L \Delta T$$


 $\Delta L = \frac{0.2 \times 3.0 \times 60}{\text{per floor}} = 36 \text{mm thermal movement}$

Example 2 - Typical suspended pipe run

A 20 metre, high-level lateral run has been designed in an open car park area. The maximum length between anchor points should be 5m. The assumed temperature of the waste fluid is 50°C.

$$\Delta L = L\Delta T$$

 $\Delta L = 0.2 \times 5.0 \times 50 = 50$ mm thermal movement between anchor points

SECTION 9
INSTALLATION
HDPE THERMAL
EXPANSION

VERTICAL & HORIZONTAL EXPANSION SYSTEMS

BRACKETING AN EXPANSION SYSTEM

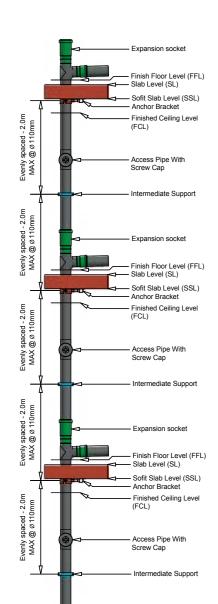
VERTICAL &
HORIZONTAL
LOCKED

BRACKETING A LOCKED SYSTEM

WC CONNECTION!

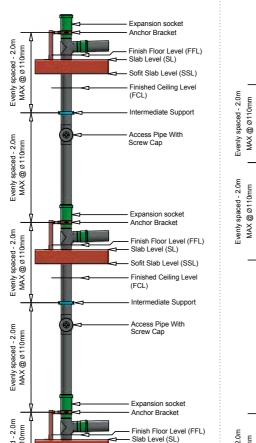
NON-PRESSURE UNDERGROUND INSTALLATION SPECIAL CONSIDERATION

> WEATHERING NFORMATION ND VENT COWL


HDPE THERMA EXPANSION

Horizontal Expansion System

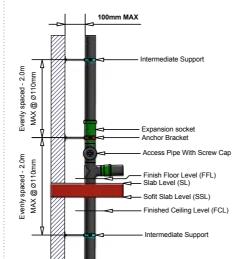
Vertical Expansion System

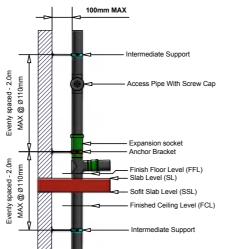

Expansion system anchored below slab

Rail system rules apply as per page 84.

Expansion system anchored above slab

Rail system rules apply as per page 89.

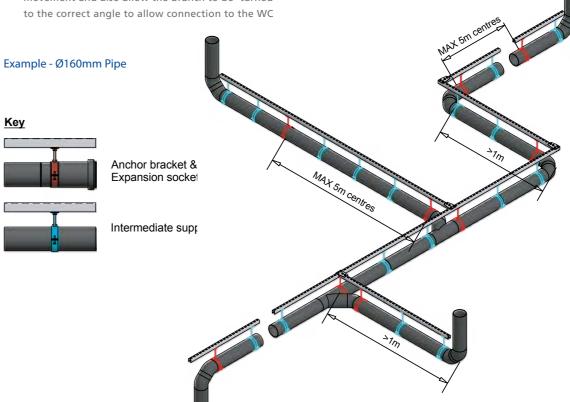



- Sofit Slab Level (SSL)

Finished Ceiling Level

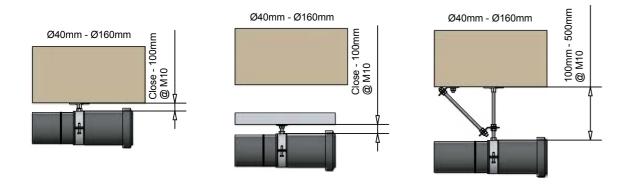
evenly spaced -MAX @ Ø110

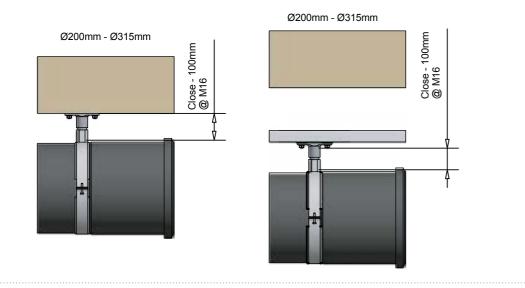
Examples of expansion system anchored to a structural wall

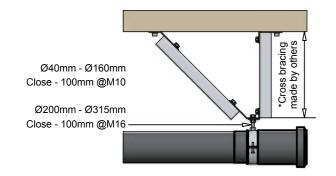

SUPPORT AND EXPANSION SOCKET DISTANCES

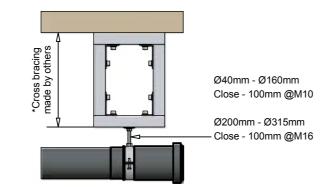
Unless there is an alternative provision for thermal movement, pipework should be fitted with expansion sockets in the following locations:

- At spacing's no greater than 5m for pipework OD Ø75mm and above
- At spacing's no greater than 2m for pipework OD Ø63mm and below
- Where the maximum distance between fixed points exceeds 2m
- At changes of direction or branch runs greater than 1m in length
- Any point where pipework passes through a floor or wall and is made good or fire-stopped must be treated as an anchor point when determining positions of expansion sockets
- Low Level WC Manifolds incorporate ring seal adaptors at each branch connection to compensate for thermal movement and also allow the branch to be 'turned' to the correct angle to allow connection to the WC


	HORIZONTAL EXPANSION SYSTEM				
Pipe size diameter (OD mm)	Maximum distance between expansion sockets (m)	Intermediate support at any change of direction and at below maximum centres (mm)			
40	2.0	400			
50	2.0	500			
56	2.0	560			
75	5.0	750			
110	5.0	1100			
160	5.0	1600			
200	5.0	2000			
250	5.0	2500			
315	5.0	3000			


* See table on page 89 for pipe weights (empty and full).




Bracketing an Expansion System

- Terrain FUZE HDPE can be anchored from the slab or off a rail system
- Cross bracing must be used for drop rods longer than figures shown below
- Rails are not supplied by Polypipe Middle East

Example of an Expansion System

Expansion sockets may be omitted if alternative provision is created in one of the following ways.

• Above the highest branch connection to a foul and/or waste stack is free to move through a weatherproof sleeve

• At the base of an external drainage stack that is connected to a drainage connection that allows movement through an EPDM seal.

Fixed Point or Anchor Point Expansion Position & Direction of Expansion

Guide Bracket or Intermediate

Slab Position Omit expansion Intermediate support pipe can move through roof Anchor Bracket **Expansion Sockets** Anchor Bracket -External Stack

(When no Manifold / Reducing Branch below) -Omit expansion Access Pipe if drainage With Screw Cap connection incorporates EPDM sleeve -Basin Anchor Bracket -(When no Manifold / Reducing Branch below) Bend must

> Ring Seal Adaptor Suspended Pipe in

> > Anchor Bracket

Branch below)

(When Manifold/Reducing

support Anchor Bracket W.C.

Intermediate

Bath/Shower-

HDPE THERMAL EXPANSION

BRACKETING A LOCKED

NSTALLATION SPECIAL CONSIDERATIO

Locked system anchored

Rail system rules apply as per page 88..

below slab

Evenly spaced -MAX @ Ø 110

Evenly spaced - 2.0m MAX @ Ø110mm

Evenly spaced -MAX @ Ø110

Evenly spaced - 2.0m MAX @ Ø110mm

Vertical Locked System

Finish Floor Level (FFL)

Finished Ceiling Level

- Slab Level (SL)

— Anchor Bracket

→ Sofit Slab Level (SSL)

Access Pipe With

Finish Floor Level (FFL)

Sofit Slab Level (SSL)

- Finished Ceiling Level

Access Pipe With

- Finish Floor Level (FFL)

- Anchor Bracket

Slab Level (SL)

Locked system anchored

Rail system rules apply as per page 88.

- Finish Floor Level (FFL)

inished Ceiling Level

Finish Floor Level (FFL)

· Slab Level (SL)

Access Pipe With

- Finish Floor Level (FFL)

- Sofit Slab Level (SSL)

Finished Ceiling Level

- Slab Level (SL)

- Slab Level (SL)

above slab

Evenly spaced -MAX @ Ø110

evenly spaced - 2.0m MAX @ Ø110mm

Locked system anchored

Finish Floor Level (FFL)

inished Ceiling Level

Access Pipe With Screw Cap

Finish Floor Level (FFL)

- Sofit Slab Level (SSL)

Access Pipe With

— Finish Floor Level (FFL)

- Sofit Slab Level (SSL)

- Finished Ceiling Level

- Slab Level (SL)

Finished Ceiling Level

- Slab Level (SL)

- Slab Level (SL)

to a structural wall

spaced: (@ Ø110

wenly

spaced · @ Ø 110

Evenly s MAX (

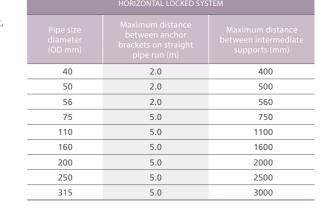
Evenly

MAX

HDPE THERMA EXPANSION

INDERGROUNI INSTALLATION SPECIAL CONSIDERATIO

WEATHERING INFORMATION AND VENT COWL


Horizontal Locked System

SUPPORT AND ANCHOR BRACKETS

Unless there is an alternative provision for thermal movement, pipework should be fitted with anchor brackets in the

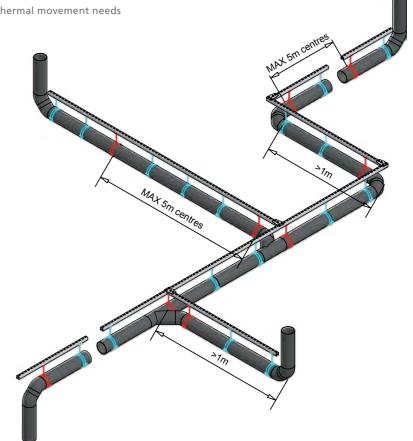
- At spacing's no greater than 5m for pipework OD Ø75mm and above
- At spacing's no greater than 2m for pipework OD 63mm and below
- Where the maximum distance between fixed points exceeds 2m
- At changes of direction or branch runs greater than 1m in length
- Any point where pipework passes through a floor or wall and is made good or fire-stopped must be treated as a fixed point when determining positions of anchor brackets

Pipe will still expand and contract into itself in a locked system. Even in a locked system, thermal movement needs

* See table on page 89 for pipe weights (empty and full).

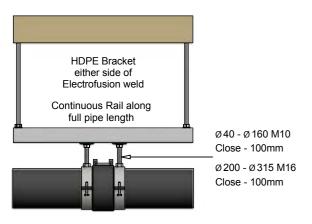
Example - Ø160mm Pipe

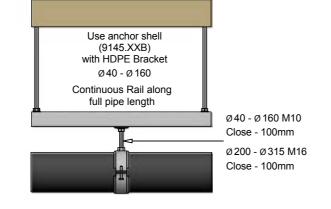
to be accounted for.

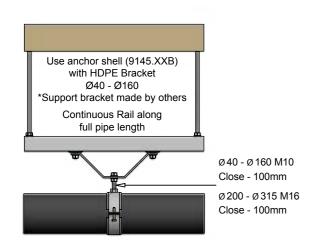

Key

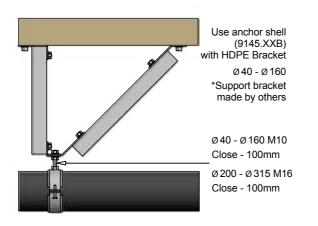
Anchor bracket

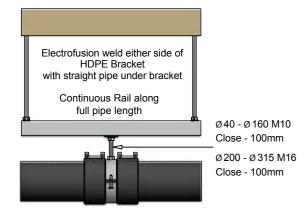
Intermediate support

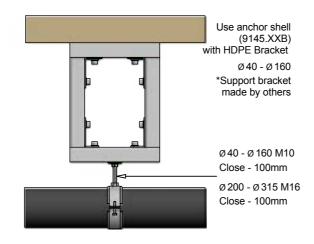



- Slab Level (SL) Sofit Slab Level (SSL) - Anchor Bracket Evenly spaced -MAX @ Ø110r Finished Ceiling Level


Terrain FUZE Technical Manual 2023


Bracketing a Locked System

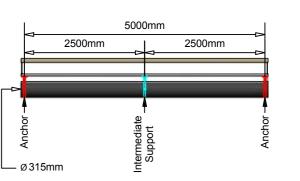

Types of Anchor Brackets on locked rail system

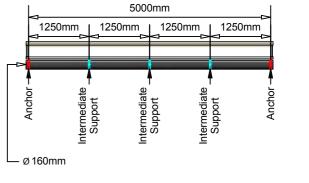


Summary of Expansion & Locked Systems

EXPANSION SYSTEMS

Rulings for anchor brackets in an expansion system:


- Pipe diameters up to 160mm M10 drop rods up to 100mm below slab or rail
- Pipe diameters up to 160mm M10 drop rods with M10 cross brace up to 500mm below slab or rail
- Pipe diameters up to 160mm where the vertical drop is greater than listed above use either the rail system or use Unistrut as a drop rod with a cross brace and an M10 connection to the bracket
- Pipe diameters 200-315mm M16 drop rods up to 100mm below slab or rail
- Pipe diameters 200-315mm where the vertical drop is greater than listed above use either the rail system or use Unistrut as a drop rod with a cross brace and an M16 connection to the bracket


LOCKED SYSTEMS

Rulings for anchor brackets in a locked system:

- In no circumstances should drop rods alone be used to support a locked anchor point
- Close coupled rail system up to 160mm diameter M10 connection between bracket and rail
- Close coupled rail system 200-315mm diameter M16 connection between bracket and rail
- Pipe diameters 200-315mm M16 drop rods up to 100mm below slab or rail
- If the rail is not being used a suitable drop support needs to be created using Unistrut and a cross brace with the same size connections to brackets as listed above for a rail system

HORIZONTAL EXPANSION SYSTEM					
	Pipe weight full of water (Kg/m)	Pipe weight empty (Kg/m)			
40	1.278	0.370			
50	1.986	0.460			
56	2.493	0.530			
75	4.479	0.740			
110	9.525	1.450			
160	20.190	3.080			
200	31.741	4.100			
250	49.252	6.100			
315	78.045	9.510			

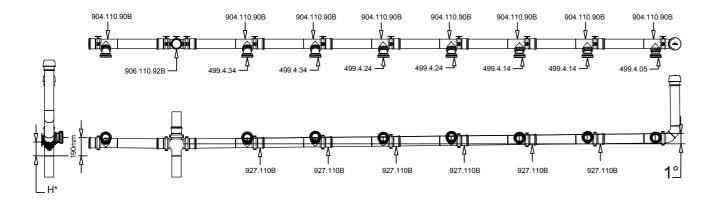
SECTION 9 INSTALLATION HDPE THERMAI EXPANSION

HORIZONTA EXPANSION SYSTEMS

BRACKETING AN EXPANSION SYSTEM

VERTICAL &
HORIZONTAL
LOCKED

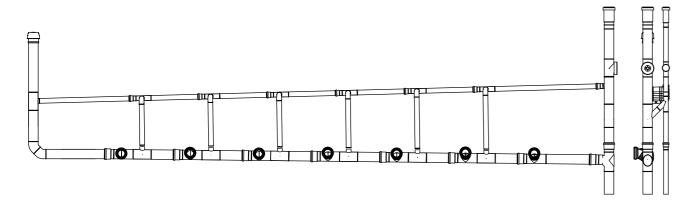
BRACKETING A LOCKED SYSTEM


CONNECTIONS

NON-PRESSURE UNDERGROUND INSTALLATION SPECIAL CONSIDERATION

> WEATHERING NFORMATION ID VENT COWL

9 Installation

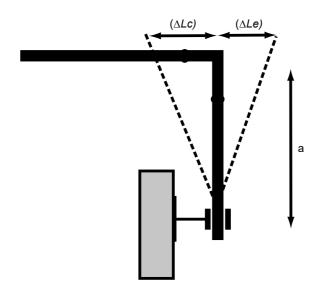

WC Connections

Float laid to a fall of 1° (17mm drop/1 metre run)

Note: If a secondary ventilation system is being installed then expansion must be provided to both the soil and waste stack and the secondary ventilation stack. Note: It is important to lubricate the ring seal adaptor with silicone grease.(9136.250L).

		WC POS	SITION (HEI		OM FFL)		
H*	1	2	3	4	5	6	7
mm	170	156	142	128	114	100	86

RISERS AND BRANCHES


It is recommended that an expansion socket is incorporated at each floor level when designing and installing FUZE HDPE stacks in multi-storey buildings. Where a branch is taken off a main run, the thermal movement of the main run is going to affect the branch

- Establish the distance between the branch and the nearest anchor
- Calculate the movement at the point where the branch joins the run
- Establish the hole size through the wall and ensure that there is enough space for the branch to naturally flex, taking into account that the movement of the branch will be limited where it passes through a wall
- Pipe diameters 200-315mm M16 drop rods up to 100mm below slab or rail
- If there is not enough room for the required offset, think about adding expansion sockets and anchor points to the main run to reduce the amount of movement experienced by the branch

Deflection Leg

The flexibility of Terrain FUZE permits expansion or contraction to be compensated for by means of directional change within a pipe system (deflection leg) as shown below.

To allow the pipe to deflect at a change in direction it is essential to calculate the distance to the first bracket (a) so that the pipe is free to expand and contract.

Terrain FUZE Technical Manual 2023

Step 1: Calculate the change in length

 $\Delta L = x L x \Delta T$

Where:

 ΔL = Expansion (mm) or contraction (-mm)

- = Co-efficient of linear expansion (mm/m/°C). For Terrain FUZE = 0.2
- L = Total length of the pipe between anchor points (m)
- ΔT = Temperature difference (°C)

NB. For waste discharges ΔT should always be calculated from 0°C, so if the temperature of the water in the pipe is to be 60°C, then ΔT is 60°C.

Step 2: Determine the length of the deflection leg

 $a = 10 \times \sqrt{(\Delta L \times \emptyset)}$

Where:

- a = Deflection leg length (distance to first bracket)
- ΔL = Expansion (mm) or contraction (-mm) from Step 1 above
- Ø = Total length of the pipe between anchor points (m)
- ΔT = Pipe outside diameter (mm)

EXPANSION

HORIZONTAL EXPANSION SYSTEMS

BRACKETING AN EXPANSION SYSTEM

VERTICAL & HORIZONTAL LOCKED SYSTEMS

BRACKETING A LOCKED SYSTEM SUMMARY

CONNECTIONS

NON-PRESSURE
UNDERGROUND
INSTALLATION
SPECIAL
CONSIDERATION

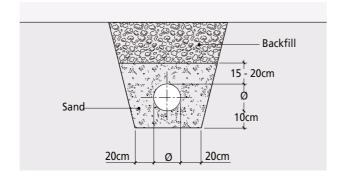
WEATHERING INFORMATION AND VENT COW

Terrain FUZE Technical Manual 2023

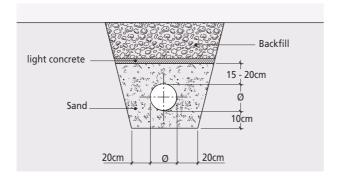
Non-pressureUndergroundInstallation

Terrain FUZE HDPE pipes and fittings marked (BD) are also suitable for underground applications.

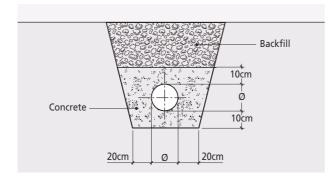
Strict attention must be given to the trench where the pipe is to be laid. This must be completely flat and should be void of any sharp objects or stones which could cause localised deformation of the pipeline. A minimum bedding of 10cm of sand should be used to provide continual support along the whole length of the pipe and minimise the risk of pointloading within the trench. Following this, the first 15-20cm of cover should be of sand again and this must be compressed to avoid pipe movement. Compacting of the cover material should take place immediately after the pipe has been covered to restrict the initial stages of movement. The depth of the trench is dependent upon whether the application is trafficked or non-trafficked and the possibility of freezing temperatures. Official guidelines, standards and regulations should be observed to calculate this requirement. (See illustrations on the right)

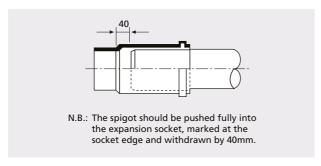

A minimum depth of 80cm must cover the pipe. To evenly distribute ground pressure on trafficked applications it is recommended to cover the layer of sand with a light concrete casting.

Two or more pipes laid in the same trench should not come into contact. A recommended distance of 10-15cm should remain between each pipeline to facilitate future maintenance. As with a standard pipe installation, this void should be filled with sand and compacted.


Rigid installations, where the pipeline is covered with concrete, do not undergo the same stresses as normal laying conditions and therefore the pipe is at no risk of deformation.

In underground installations, the ambient temperature is fairly stable and the fluid temperatures from the varying inlets have mixed and stabilised within the above ground pipe system. Expansion sockets are not required every six metres.


Light traffic



Heavy traffic

Rigid installation

Seal areas should be protected from ingress of materials when being buried.

Special Consideration for Buried Drain Application

The Terrain FUZE HDPE system is suitable for buried drain applications under the envelope of the building at reasonable shallow depths and normal conditions.

When any of the following conditions exist please contact Polypipe Terrain for confirmation on its suitability:

- Pipes at depths greater than 4 metres below ground level
- Pipes subjected to external water pressures exceeding 2 metres head (high water table)
- Contaminated ground conditions
- Pipes subjected to internal negative pressures

- If during the construction stage high point loads will be experienced due to heavy plant etc.
- If other manufacturers components are to be incorporated into the system
- Non domestic type discharges are expected, for example:
 - High volume discharges that could subject the pipe to more than 1.5 bar pressure
- Combined high temperature and high volume discharges
- Chemical waste
- Radioactive waste

When leaving the footprint of the building we would recommend adapting onto a system designed for this purpose. Ridgidrain, for surface water drainage, or Polysewer, for foul sewers from Polypipe Civils are suitable systems for these applications.

Ridgidrain

- Surface water applications
- 100-900mm diameter HDPE pipes and fittings
- BBA approved

Polysewer

- Foul and combined applications
- 150 300mm diameter PVCu pipes and fittings
- BSi Kitemarked and BBA approved

For further information please contact Polypipe Middle East technical team on +971 (0) 4 518 3000 or middleeast@polypipe.com

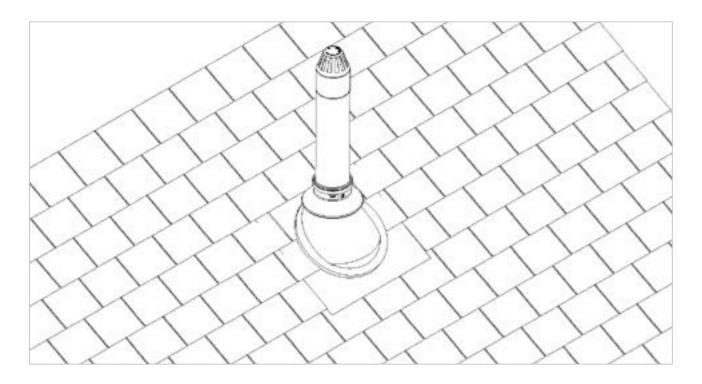
VERTICAL & HORIZONTAL EXPANSION

HDPE THERMA EXPANSION

BRACKETING AN EXPANSION SYSTEM

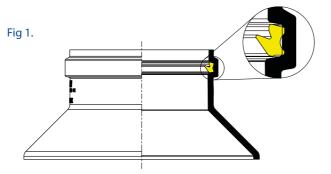
VERTICAL & HORIZONTAL LOCKED

BRACKETING A LOCKED SYSTEM


CONNECTIONS

FELECTION LEG

UNDERGROUND
INSTALLATION
SPECIAL
CONSIDERATION


VEATHERING NFORMATION ID VENT COWL

Weathering Apron and Vent Cowl

WEATHERING SLATES FOR PITCHED ROOFS

- Slide the 149 weathering slate over the stack using Terrain 9136 silicone lubricant.
- Dressing the weathering slate over the lower tiles first, then lay the side and upper tiles over the remaining portion of the weathering slate.
- Slide the weathering apron (931.110.200B) down to the rubber cone on the weathering slate into position ensuring the seal is facing in a downwards orientation as per fig 1.
- Affix the vent cowl (950.110B) onto the top of the stack by either an electrofusion or butt weld joint.

NOTE: On low pitched roofs, optimum weathering may be achieved by making a single weld to the lower edge of the base plate.

WEATHERING SLATES FOR FLAT ROOFS (three layers felt)

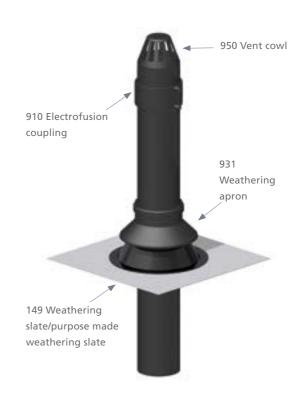
- Dress the first layer of felt up to the pipe
- Slide the 149 weathering slate over the stack, ensuring the aluminium plate is dressed flush with a good contact onto the first layer of felt.
- Prime the aluminium baseplate with a good quality bitumen primer.

CAUTION: Keep hot material away from rubber cone

- Place a second layer of felt over the baseplate up to the cone and trim accordingly. Repeat for a third layer of felt.
- Slide the weathering apron (931.110.200B) down the stack to the rubber cone into position using Terrain 9136 silicone lubricant ensuring the seal is facing in a downwards orientation as per fig 1.
- Affix the vent cowl (950.110B) onto the top of the stack by either an electrofusion or butt weld joint.

WEATHERING SLATES FOR FLAT ROOF (three layers felt)

- Dress the first layer of felt up to the pipe
- Slide the 149 weathering slate over the stack, ensuring the aluminium plate is dressed flush with a good contact onto the first layer of felt.
- Prime the aluminium baseplate with a good quality bitumen primer.


CAUTION: Keep hot material away from rubber cone

- Place a second layer of felt over the baseplate up to the cone and trim accordingly. Repeat for a third layer
- Slide the weathering apron (931.110.200B) down the stack to the rubber cone into position using Terrain 9136 silicone lubricant ensuring the seal is facing in a downwards orientation as per fig 1.
- Affix the vent cowl (950.110B) onto the top of the stack by either an electrofusion or butt weld joint.

WEATHERING TO PITCHED ROOFS USING PURPOSE MADE SLATE (e.g. Lead)

- Position the weathering slate onto the open end of the soil stack.
- Slide the weathering apron (931.110.200B) down the stack to the weathering slate using Terrain 9136 silicone lubricant, ensuring the seal is facing in a downwards orientation as per fig 1.
- Affix the vent cowl (950.110B) onto the top of the stack by either an electrofusion or butt weld joint.

Terrain FUZE Technical Manual 2023

WEATHERING TO ASPHALT ROOFS USING PURPOSE MADE SLATE (e.g. Lead)

- Position the weathering slate onto the open end of the soil stack.
- Lay the asphalt as normal over the weathering slate up to the lead upstand around the stack. Feather this edge off with the asphalt.
- Slide the weathering apron (931.110.200B) down the stack to the weathering slate using Terrain 9136 silicone lubricant, ensuring the seal is facing in a downwards orientation as per fig 1.
- Affix the vent cowl (950.110B) onto the top of the stack by either an electrofusion or butt weld joint.

SECTION 9 INSTALLATION HDPE THERMAL EXPANSION

VERTICAL & HORIZONTAL EXPANSION SYSTEMS

AN EXPANSION SYSTEM

VERTICAL &
HORIZONTAL
LOCKED
SYSTEMS

BRACKETING A LOCKED SYSTEM

VC CONNECTION

NON-PRESSURE UNDERGROUND INSTALLATION SPECIAL CONSIDERATION

> WEATHERING INFORMATION

Terrain FUZE Technical Manual 2023

10 Firetrap Sleeves and Collars

Firetrap Sleeves

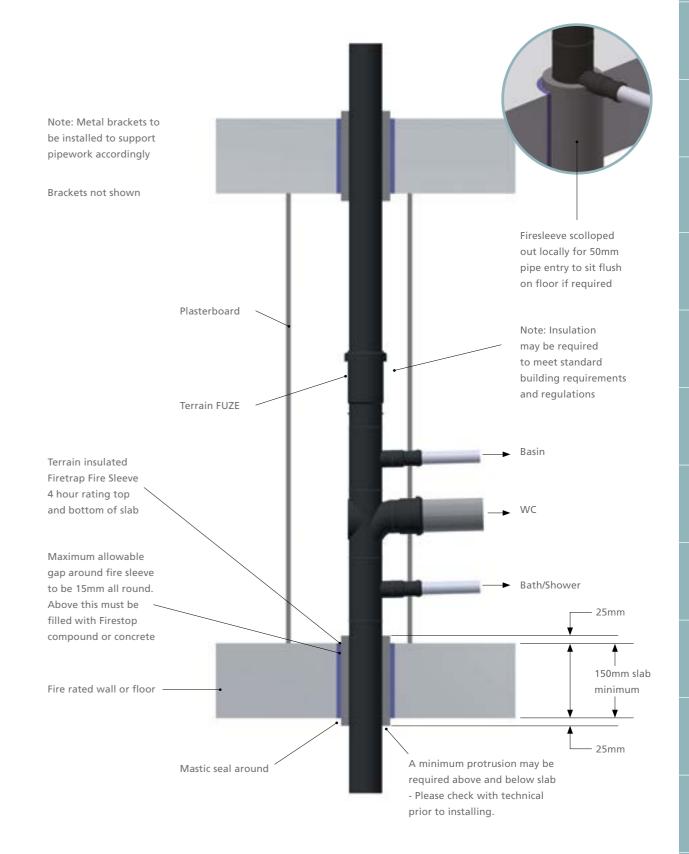
The Terrain Firetrap Sleeve is a cost-effective product for the fire stopping of pipe penetrations whilst maintaining similar thermal and acoustic properties as standard mineral fibre insulation. The Terrain Firetrap Sleeve was developed with ease of installation in mind.

The sleeve can be quickly and simply fitted onto the pipe and slid into the penetration ensuring that there are no air gaps around the sleeves by filling with mortar or mastic. In a fire situation, the sleeve expands to fill the available space (15mm max) between the pipe and the penetration and will crush and close off plastic drainage pipes. The pipe forms a solid char preventing the passage of fire and smoke to the adjacent compartment.

APPLICATIONS

For Terrain PVC, Terrain FUZE above ground drainage through:

- Concrete, masonry or plasterboard partitions
- Concrete floor constructions


FEATURES

- Up to 4 Hour Fire Rating to BS 476 Part 20, BS EN 1366-3
- · Protects pipe above and below the slab
- One sleeve can replace two collars on a horizontal
- Easy installation
- Don't have to drill slab
- No need for mechanical fixings
- No mastic is required, providing close fit
- Easily cut to size to minimise wastage
- Simple to install without special tools or skills
- Can be retro-fitted
- Offers excellent acoustic insulation
- Maintains the thermal insulation of the pipe through the slab or wall penetration
- Maintains vapour seal of existing insulation
- Allows for thermal movement of pipe

*Depending on pipe composition and application. See datasheet FF109 for further information.

PRODUCT CODE	PIPE DIAMETER SUITABLE FOR (mm)	SLEEVE HOLE DIAMETER (mm)	SLEEVE HOLE OUTSIDE DIAMETER (mm)	LENGTH (mm)
1925.42	40	42	92 - 104	300
1925.54	50	54	104 - 116	300
1925.60	56	60	110 - 122	300
1925.76	75	76	126 - 138	300
1925.114	110	114	164 - 176	300
1925.169	160	169	219 - 231	300

Fire protection for vertical Terrain drainage pipework in a NON fire rated duct

10 Firetrap Sleeves and Collars

Firetrap Collars

Terrain Firetrap Collars have been specifically designed to re-instate the fire resistance of a wall or floor which has been penetrated by services such as Terrain PVC, Terrain FUZE or Terrain Q.

Manufactured in steel, each fire collar contains an internal lining of intumescent graphite impregnated organic polymer. Anchoring hooks are also supplied. The collars will seal pipes from 40mm to 315mm diameter and can be face fixed or set-in to a wall or ceiling structure. They are suitable for use on concrete, masonry and plasterboard partitions.

They have a up to 2 hour fire rating and feature mounting tabs for quick and easy installation.

APPLICATIONS

For Terrain PVC, Terrain FUZE above ground drainage through:

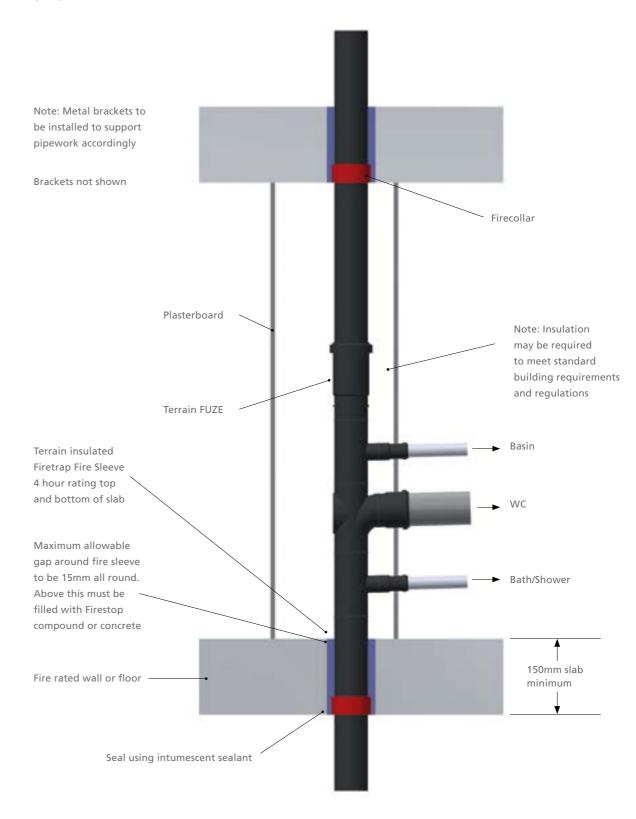
- Concrete, aerated concrete, masonry or plasterboard partition walls
- Concrete, aerated concrete or masonry floor construction

FEATURES

For Terrain PVC, Terrain FUZE above ground drainage through:

- Up to 4 Hour fire rating
- Powder coated steel sleeve
- Can be surface mounted or built in
- Mounting tabs for quick and easy installation
- Seals against smoke, toxic gases, flames and heat
- Can be installed in a recessed area to minimise overall dimensions
- Maintains vapour seal of existing insulation
- Allows for thermal movement of pipe

*Depending on pipe composition and application. See datasheet TDSCIPC for further information.



PRODUCT CODE	Ø
1625.40R	40mm
1625.55R	55mm
1625.75R	75mm
1625.82R	82mm
1625.110R	110mm
1625.160R	160mm
1625.200R	200mm
1625.250R	250mm
1625.315R	315mm

Collars will seal pipes from 40mm to 315mm diameter and can be face fixed or set-in to a wall or ceiling structure.

Fire protection for vertical Terrain drainage pipework in a NON fire rated duct

11 System Testing and Maintenance

NG.3 Testing

Terrain FUZE should be tested in accordance with guidelines stated within BS EN 12056-2 (Annex NG.3.1) which lays out the following:

NG.3.1 AIR TEST

NOTE Normally this test is carried out to confirm that all pipes and fittings are airtight. It should be completed in one operation but for large multi-storey systems testing in sections may be necessary.

NG.3.1.1 PREPARATION

The water seals of sanitary appliances should be fully charged and test plugs or bags inserted into the open ends of the pipework to be tested. To ensure that there is a satisfactory air seal at the base of the stack, or at the lowest plug or bag in the stack if only a section of the pipework is to be tested, a small quantity of water sufficient to cover the plug or bag can be allowed to enter the system.

One of the remaining test plugs should be fitted with a tee piece, with a cock on each branch, and one branch being connected by means of a flexible tube to a manometer. Alternatively, a flexible tube from a tee piece fitted with cocks on its other two branches can be passed through the water seal of a sanitary appliance. Any water trapped in this tube should be removed and then a manometer can be connected to one of the branches.

NG.3.1.2 APPLICATION

Air is pumped into the system through the other branch of the tee piece until a pressure equal to 38 mm water gauge is obtained. The air inlet cock is then closed and pressure in the system should remain constant for a period of not less than 3 min.

NG.3.1.3 LEAK LOCATION

NOTE Defects revealed by an air test may be located by the methods given in NG.3.1.3.1, NG.3.1.3.2 and NG.3.1.3.3.

NG.3.1.3.1 SMOKE

A smoke producing machine may be used which will introduce smoke under any pressure into the defective pipework. Leakage may be observed as the smoke escapes. Smoke cartridges containing special chemicals should be used with caution, taking care that the ignited cartridge is not in direct contact with the pipework and that the products of combustion do not have a harmful effect upon the materials used for the discharge pipe system. Smoke testing of plastics pipework should be avoided due to naphtha having a detrimental effect, particularly on ABS, PVC-U and MUPVC. Rubber jointing components can also be adversely affected.

NG.3.1.3.2 SOAP SOLUTION

With the pipework subject to an internal pressure using the smoke machine method as described in NG.3.1.3.1, a soap solution can be applied to the pipes and joints. Leakage can be detected by the formation of bubbles.

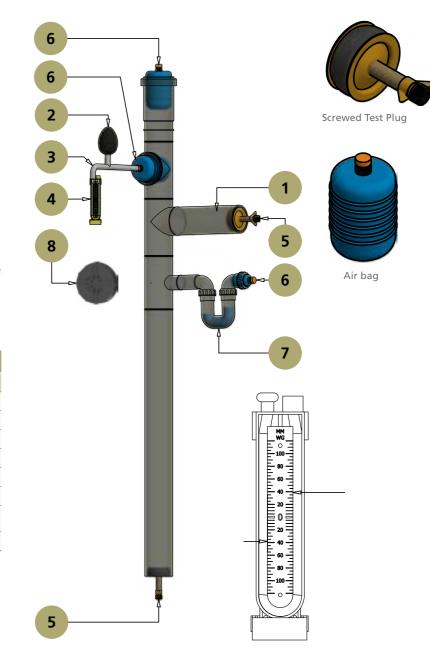
NG.3.1.3.3 WATER TEST

There is no justification for a water test to be applied to the whole of the plumbing system. The part of the system mainly at risk is that below the lowest sanitary appliance, and this may be tested by inserting a test plug in the lower end of the pipe and filling the pipe with water up to the flood level of the lowest sanitary appliance, provided that the static head does not exceed 6m.

*For accurate readings, please ensure equipment is regularly checked.

Air pressure test to comply with BS EN 12056-2 for testing a stack with connections

SCREWED TEST PLUG


- Blank or open
- For use in pipe ends
- Manufactured and supplied by others

AIR BAG

- Blank
- For use in access pipe/ expansion socket/pipe ends
- Manufactured and supplied by others

Traps must be filled with water to ensure there is positive pressure within the system to seal the waste inlet.

NO.	PART			
1	Pipework to test			
2	Bellow			
3	Hose			
4	U-Gauge (should read 38mm)			
5	Screwed Test Plug			
6	Air Bag			
7	Trap (must be filled with water)			
8	Screwed Cap (for access door)			

Note: Blue temporary caps are not to be used for air pressure testing, only black threaded caps are to be used.

Further information is available on technical bulletin:2016 - PT06 - Air pressure test to comply with BS EN 12056-2 - Version 6

Permission to reproduce extracts from BS EN 12056-2:2000 is granted by BSI. British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hardcopies only: Tel: +44 (0)20 8996 9001, Email: cservices@bsigroup.com.

Terrain FUZE Technical Manual 2023 Terrain FUZE Technical Manual 2023

Terrain FUZE Technical Manual 2023

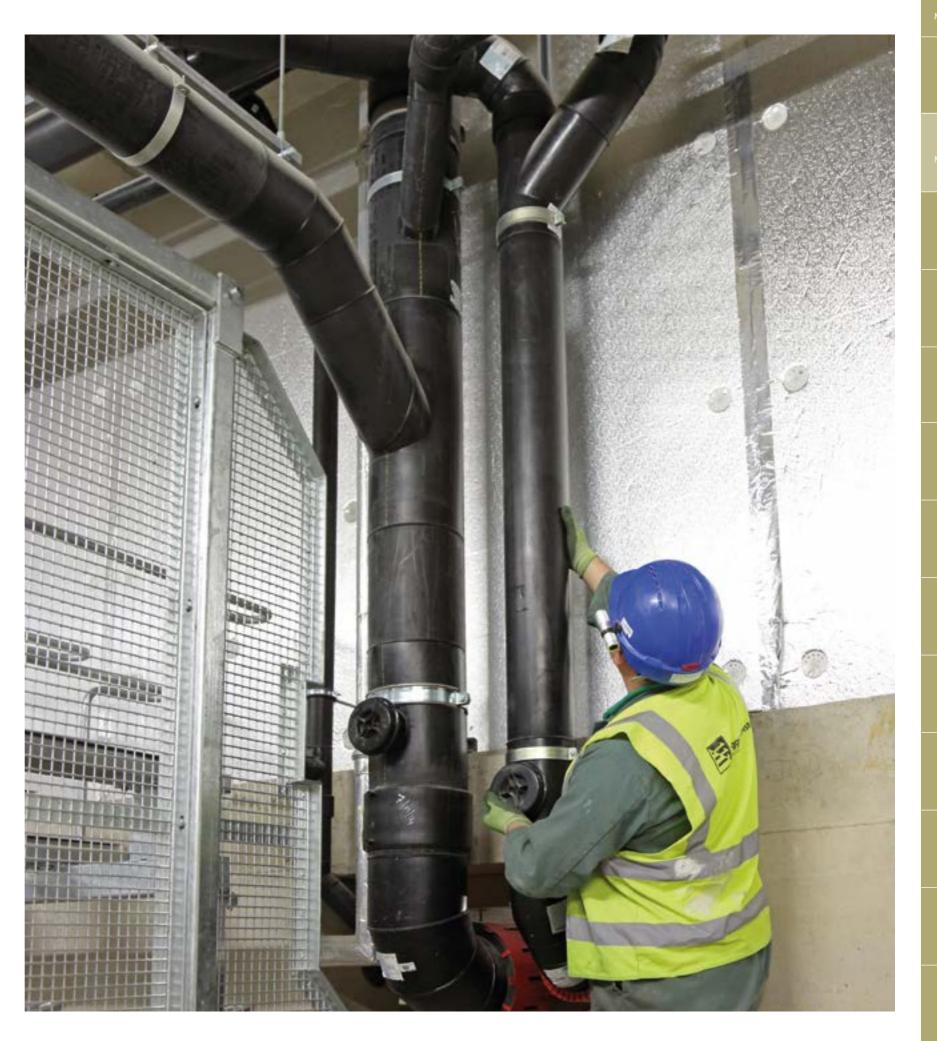
Terrain FUZE Technical Manual 2023

11 System Testing and Maintenance

System Maintenance

NG.4.1 GENERAL

Discharge pipe systems should be kept in a clean and sound condition in order to maintain maximum efficiency. This is facilitated by designing in accordance with the recommendations in this national annex. The following points should be noted:


- When access covers, caps and clearing eyes are removed, damaged packing, ring seals, washers and loose fittings should be renewed before replacement.
- Care should be taken in the use of chemical descaling agents, which are often of a corrosive nature and materials employed in the pipe system should be clearly identified before treatment to ensure that the internal surfaces are not subject to damaging chemical attack.
- Caution is necessary when employing the methods of clearing obstructions which involve the use of air or water at high pressures.
- Hand operated rods for removing blockages in discharge pipes should be capable of passing through the system without damaging the internal surfaces of pipes and fittings.
- Mechanised rodding equipment should only be used by properly trained operators and the pipework to be cleared should be thoroughly examined in advance to enable selection of the appropriate cleaning attachments.
- In renewing paintwork care should be taken to preserve any distinguishing colours which may have been used for identification purposes. Reference should be made to BS 1710.

NG.4.2.DEPOSITS DUE TO MISUSE OF THE DISCHARGE SYSTEM

Completely or partial blockages due to large objects or compacted masses, such as toilet paper and sanitary towels, can usually be loosened by rodding. All such material should be removed from the system at the nearest access point.

NG.4.3 PERIODIC INSPECTION

In addition to general maintenance work, periodic inspections and tests may be advisable to ascertain if there is any misuse or negligence. All defects should be fixed.

SECTION 11
SYSTEM
TESTING AND
MAINTENANCE

TESTIN

SYSTEM

12 Support As the industry moves forward, we're here right by its side. Terrain FUZE is proof of our commitment to making things simple for our customers, an innovative plastic drainage system that's designed for the future. Our website also provides useful information to keep you up to date with news and innovations as they happen, including how Terrain FUZE can further enhance your project. To find out more visit: www.middleeast.polypipe.com

Polypipe Middle East

Investing in our business and our people enables us to bring more expertise, more support and more innovation to our customers, helping them to create safe and sustainable commercial buildings, whether newbuild or refurbishment projects.

BUILDING SERVICES SPECIALISM

Having made significant investment in expanding our portfolio to include not only our trusted and well-established Terrain drainage systems, but also MecFlow, our new water supply system, we're committed to working with our customers to provide the best building services solutions for their project. From schools, hospitals and tall buildings to shopping centres, local authorities and commercial and industrial developments, we provide drainage and water supply solutions that help our customers create safe and sustainable services within buildings.

SERVICE AND SUPPORT

Recognising the challenges the construction industry faces, we continuously research and develop products and services that enable us to support our customers more – from working with Engineers to design the best solutions for complex projects to helping Contractors overcome labour shortage issues, a lack of on-site storage and on-site waste management. We develop services to support our customers so that together, we can achieve more.

SUPPORTING PRODUCTS AND LITERATURE

With both drainage and water supply systems in its portfolio, Polypipe Middle East has a number of solutions for your next project. More information on these systems can be found at: www.middleeast.polypipe.com/

TAKING YOUR PROJECT FURTHER

As part of the Genuit Group, we have a number of complementary water and climate management systems available to maximise the comfort and efficiency of your commercial building:

Nuaire Ventilation Systems

Our Nuaire brand has been at the forefront of packaged Air Handling Units (AHUs) for over 20 years, designing and manufacturing market leading ranges. Explore the full range of Nuaire ventilation systems at www.nuaire.co.uk.

Polypipe Underfloor Heating

Underfloor heating systems are increasingly popular and are rapidly becoming the heat source of choice for commercial and multi-occupancy residential developments. For more information on our range of Underfloor Heating Systems, controls and manifolds visit: www.polypipeUFH.com.

Polypipe: Inspiring Green Urbanisation

To help address the pressures that urbanisation and climate change place on our built environment, we've developed a new generation of technologies that sustain and optimise urban green assets through extended and fully integrated water management solutions. Systems that make space for water, alleviate flooding and capture, store and reuse rainwater, whilst enabling and inspiring Green Urbanisation. www.polypipe.com/civils/gi

All descriptions and illustrations in this publication are intended for guidance only and shall not constitute a 'sale by description'. All dimensions given are nominal and Polypipe may modify and change the information, products and specifications from time to time for a variety of reasons, without prior notice. The information in this publication is provided 'sa is' on February 2023. Updates will not be issued automatically. This information is not intended to have any legal effect, whether by way of advice, representation or warranty (express or implied). We accept no liability whatsoever (to the extent permitted by law) if you place any reliance on this publication you must do so at your own risk. All rights reserved. Copyright in this publication belongs to Polypipe and all such copyright may not be used, sold, copied or reproduced in whole or part in any manner in any media to any person without prior consent. Polypipe is a registered trademark of the Genuit Group. All Polypipe products are protected by Design Right under CDPA 1988. Copyright © 2023 Polypipe. All rights reserved.

13 Approval

Terrain FUZE, HDPE Soil and Waste

Terrain FUZE is made to the manufacturing standards stated below. These standards set out the dimensional, physical and mechanical characteristics that each individual product shall conform to.

PIPES AND ELECTROFUSION COUPLINGS

Pipes and Electrofusion Couplings are manufactured in accordance with BS EN 1519 Standard, Kitemark certificate KM 729217, and is covered by the British Board of Agrément (BBA), certificate 07/4479.

FITTING

Fittings are also covered by the British Board of Agreement (BBA), certificate 07/4479.

FIRETRAP COLLARS AND FIRETRAP SLEEVES

Firetrap Collars hold a European Technical Assessment (ETA-12/0332).

Fire collars comply to standards BS EN 13501-1 & 13501-2.

Fire sleeves comply to standards BS EN 1363-1 & 1366-3.

For copies of certificates please visit: www.polypipe.com/commercial-building-service

P.A.P.A. AND AAV

Terrain P.A.P.A. - BBA - Certificate No. 18/5551

Terrain Air Admittance Valves - BS EN 12380/BBA
- Certificate No. 09/4650

Polypipe Quality Assurance

Our Terrain products are accredited to the following Quality Management Systems:

BS EN ISO 9001 - Qualit Management System

BS EN ISO 14001 - Environmenta Management System

BS ISO 45001 - Occupational Health & Safety Management System

PAS 99 - Integrated Management Registration

BS ISO 56002 - Innovation Management System

FURTHER INFORMATION AND ASSISTANCE

Terrain products are backed by a comprehensive technical advisory service, available to provide advice and design guidance on all aspects of above and below ground drainage.

Technical services include:

· On-site advice and problem solving.

For prompt assistance, please contact Polypipe Middle East technical team on: +971 (0) 4 518 3000

Email: middleeast@polypipe.com

www.polypipe.com/middleeast

Terrain FUZE

Design, specification and installation guide

Polypipe Middle East Water Technology LLC

Arenco Tower, Office 908

Dubai Media City

Dubai

United Arab Emirates

Tel 971 (0) 4 518 3000

Email middleeast@polypipe.com

www.polypipe.com/middleeast

